Filter and Sort







GEOL2017ADAMS75890 GEOL

THE POTENTIAL OF DIFFERENT SURFACES TO NUCLEATE LOW-TEMPERATURE DOLOMITE

Type: Undergraduate
Author(s): Kayla Adams Geology
Advisor(s): Omar Harvey Environmental Science
Location: Session: 1; B0; Table Number: 1

poster location

My research is dealing with the formation of low temperature dolomite. In the modern sea, the water is supersaturated with respect to dolomite and hence should be precipitating from solution across the globe. However even though the mineral should be precipitating all over it is only found to be doing so in very few, localized areas. However, there is evidence of large scale dolomite precipitation in ancient seas. This enigma has puzzled geologists for over 200 years. Some postulations have been made that low temperature dolomite observed in localized areas in modern sea water is due to biotic activity. However, recent evidence showing that low temperature dolomite can be formed equally efficiently in the presence or absence of biotic activity, contradicts such postulation. My research will test the hypothesis that it is the surface binding energetics rather than biotic versus abiotic surface that determines where low temperature dolomite is My research is dealing with the formation of low temperature dolomite. In the modern sea, the water is supersaturated with respect to dolomite and hence should be precipitating from solution across the globe. However even though the mineral should be precipitating all over it is only found to be doing so in very few, localized areas. However, there is evidence of large scale dolomite precipitation in ancient seas. This enigma has puzzled geologists for over 200 years. Some postulations have been made that low temperature dolomite observed in localized areas in modern sea water is due to biotic activity. However, recent evidence showing that low temperature dolomite can be formed equally efficiently in the presence or absence of biotic activity, contradicts such postulation. My research will test the hypothesis that it is the surface binding energetics rather than biotic versus abiotic surface that determines where low temperature dolomite is formed. To test this hypothesis, I am doing batch experiments and calorimetry (energetics) experiments on known dolomite-forming and non-dolomite forming surfaces with synthetic sea water of composition similar to ancient Silurian age versus modern sea water. Calorimetric experiments will allow us to determine the type of binding and binding energy associated with non-dolomite versus dolomite-forming surfaces. Based on this data, I hope to determine precisely if the binding energy influences the growth of dolomite on a given surface and assess what kinds of surfaces will likely allow for low temperature dolomite to form in modern systems.formed. To test this hypothesis, I am doing batch experiments and calorimetry (energetics) experiments on known dolomite-forming and non-dolomite forming surfaces with synthetic sea water of composition similar to ancient Silurian age versus modern sea water. Calorimetric experiments will allow us to determine the type of binding and binding energy associated with non-dolomite versus dolomite-forming surfaces. Based on this data, I hope to determine precisely if the binding energy influences the growth of dolomite on a given surface and assess what kinds of surfaces will likely allow for low temperature dolomite to form in modern systems.

View Poster

GEOL2017ANDREWS23076 GEOL

Volcanic and Volcaniclastic Lithofacies in a Mesoproterozoic Arc Sequence, Barby Formation, Southwest Namibia

Type: Graduate
Author(s): Virginia Andrews Geology David Baylor Geology Katelyn Lehman Geology John Williams Geology
Advisor(s): Richard Hanson Geology
Location: Session: 1; 2nd Floor; Table Number: 3

poster location

The Barby Formation makes up part of the Konkiep Terrane, which is a major Mesoproterozoic arc complex along the Kalahari craton margin in southwest Namibia. Previous mapping indicates that the Barby Formation contains a laterally and vertically complex series of basaltic to rhyolitic lavas, rhyolitic ignimbrites, and associated hypabyssal intrusions. Our new work shows that significant basaltic to andesitic pyroclastic successions are also present within the unit and record a wide variation in eruption styles.

Detailed mapping reveals the presence of Hawaiian, Strombolian and phreatomagmatic pyroclastic deposits forming successions up to X m thick emplaced close to source vents and intercalated with fine-grained lacustrine strata in an area ~20 km2. The most abundant deposits consist of basaltic to andesitic spatter accumulations formed from vigorous lava fountains during Hawaiian-style eruptions. These sequences show random vertical transitions on the scale of a few meters from moderately agglutinated to densely welded spatter, which reflect variations in pyroclast accumulation rates. Individual spatter pieces are up to x cm long. The densely welded spatter forms lava-like units, but we see no evidence of clastogenic lava flows. Sequences of basaltic lapillistone with dispersed ribbon and fusiform bombs up to 50 cm across record Strombolian eruptions during episodes of lower magma flux without involvement of external water. The spatter accumulations typically grade upward into phreatomagmatic deposits containing minor amounts of spatter and cauliflower bombs mixed with poorly vesicular lapilli tuff, in which particle shapes are controlled mostly by fracture surfaces rather than broken bubble walls; up to 30% lacustrine sediment is intermixed with juvenile lapilli and ash in these deposits. We infer that changes in eruptive style in this part of the arc sequence were controlled at least partly by variations in magma ascent rates at shallow depths, as documented in numerous other volcanic provinces. Transitions from Hawaiian to phreatomagmatic eruptions may at least partly reflect a decrease in magma flux in the presence of external water, lowering the magma-to-water mass ratio so that hydrovolcanic explosions became possible.

View Poster

GEOL2017BRUNNER57304 GEOL

Lavaca County, Texas Eagle Ford Isopach

Type: Undergraduate
Author(s): Eric Brunner Geology
Advisor(s): Tamie Morgan Geology
Location: Session: 2; 2nd Floor; Table Number: 6

poster location

The Eagle For Shale is a cretaceous geological formation that contains vast amounts of hydrocarbons. It is located in South Texas and is home to the largest oil and gas development in the world based on capital invested. The Eagle Ford play is shallower compared to other formations, and due to its high carbonate content and lack of clay content, the shale is more brittle allowing higher production rates through the process of hydraulic fracturing.

A GIS analysis of the Eagle Ford formation has been prepared in Lavaca County, Texas focusing on the producing trend that ceased development when crude oil prices dropped. This analysis will pay close attention to the San Marcos Arch and its impact on the Eagle Ford thickness adjacent to it and over it. This analysis discusses the arch itself, when in geologic time it occurred and what impact that event may not have had on the formation of the Eagle Ford.

GEOL2017COLWELL9962 GEOL

Correlation of Chemostratigraphy, Mechanical Stratigraphy, and Total Organic Carbon using one core of the Barnett Shale, Fort Worth Basin, Hood County, Texas

Type: Graduate
Author(s): Christopher Colwell Geology
Advisor(s): Helge Alsleben Geology
Location: Session: 2; B0; Table Number: 5

poster location

Unconventional resources have become increasingly important in the production of hydrocarbons. Shales, which are one common unconventional resource being explored, are generally very difficult to work with due to their apparent homogeneous, fine-grained nature. Detailed studies often require the use of specialized tools to analyze and understand the rock. X-ray fluorescence, X-ray powder diffraction, carbon analyzers, and mechanical strength testers are commonly used tools to analyze shale cores. Results from these tools provide a wealth of data that allow detailed understanding of these resource rocks.
The Barnett Shale, which is the primary source rock for oil and gas reservoirs in the Bend arch/Fort Worth Basin area, has recently been an exploration target and now is a significant gas-producing formation in Texas. Research has shown that the Barnett Shale is organic-rich and thermally mature for hydrocarbon generation. The estimated maximum gas storage capacity of the Barnett Shale is 540 mcf/acre-foot.
In this study, a single core is analyzed using the above-mentioned devices. The goals are to better understand of how unconfined compressive strength (UCS), composition, TOC, and core dimensions correlate and affect one another. By completing various analyses, several questions can be addressed including: 1) How does the sample volume affect strength data obtained from handheld devices? 2) Which minerals control UCS? 3) Are X-ray fluorescence data sufficient to characterize the mineralogy or are X-ray powder diffraction data advantageous? 4) How do mechanical stratigraphy and XRD data correlate and are correlations comparable to mechanical stratigraphy and XRF data? 5) Which trace elements represent the best proxy for total organic carbon (TOC) content? Answering these questions will add new data to a growing database on the Barnett Shale and help us better understand this unconventional resource play.

View Poster

GEOL2017CRADDOCK11952 GEOL

Regional Stratigraphic Characteristics and Locations of Exposed Upper Cretaceous Outcrops in Dallas Fort Worth Metroplex

Type: Undergraduate
Author(s): Jeffrey Craddock Geology Alec Burns Geology
Advisor(s): Tamie Morgan Environmental Science
Location: Session: 2; 2nd Floor; Table Number: 7

poster location

In 1983 the American Association of Petroleum Geologist published a geologic guidebook called “Stratigraphic and Structural Overview of the Upper Cretaceous Rocks exposed in the Dallas Vicinity” written by Robert T Clarke and David E. Eby. This field publication outlined a guided field trip of stops of interest in Dallas County and the surrounding counties. The user can follow the guidebook with an outlined travel route to a series of designated stops of known outcrops. The Upper Cretaceous rocks exposed in the Dallas vicinity area were designated by Adkins in 1932 from oldest to youngest; the Grayson Formation (Washita Group) and the Woodbine, Eagle Ford, Austin, and Taylor Groups. The trip begins on the Black Prairie in Dallas and proceeds westward across the Eastern Cross Timbers to Arlington. The field trip area follows roughly along the structural boundary between the Fort Worth basin in the northwest and the Ouachita fold belt in the southeast. This field guide includes hand drawn maps, hand drawn stratigraphic sections and black and white reprinted photographs of the outcrops described. Each stop has a detailed description to allow the user to find the outcrop and details about fossil assemblages and particular characteristic of the formation at the location. The information in the guidebook is very useful but the media used at the time is now considered outdated.

To update this detailed field guide with more modern technology and locational accuracy, a GIS project was conducted to assimilate all the necessary geospatial data layers, traveling routes, GPS location of each designated stop and new color photography of the outcrops visited. All of this geospatial data was collected and formatted to allow a user of the field guide to traverse the entire field trip by accessing an integrated geospatial map. The ultimate goal of this project is to publish this material as a web based story map to allow easy web access to anyone interested in outcrops and provided information. This story map would make this information available to users on mobile products and allow users to contribute remarks and additional important outcrop locations to the product.

Adkins, W.S., 1932, The Mesozoic systems of Texas, in The Geology of Texas:
Univ. Texas Bull., no. 3232, p. 239-518.

GEOL2017DRAZAN30194 GEOL

Visual Analysis of Point Bar in Powder River, Montana

Type: Undergraduate
Author(s): Jacqueline Drazan Geology
Advisor(s): Tamie Morgan Geology
Location: Session: 2; 3rd Floor; Table Number: 3

poster location

Studying modern point bars and their internal architecture are problematic due to constant saturation year round and the lack of dating capabilities. Other methods have not proven satisfactory at building timelines of a point bar. The point bars in the Powder River (near Broadus, Montana) present a unique opportunity compared to typical fluvial systems.
The methodology used aerial photographs, measured sections, and LIDAR data all in correlation with the USGS (performed by J.A. Moody and R.H. Meade, 1979 to present day) surface elevation survey. An 80-meter trench was dug through the point bar to create the model using 3D photogrammetry consisting of over ten-thousand photos (for another project). The objective of this research project was to map the coffin bars and scroll bars on the surface of the main point bar body nearest the main trench. Research deals with the scroll bars and shadow bars in relation to the creation and progression of the point bar along the meandering river. Field maps were digitized to show different surface features. Visual analysis was performed to map the aerial movement of the point bar and the rough approximations of scroll and shadow bars. The analysis compared growth of the modern point bar through time.
LIDAR data was gathered and used to help analyze these surface structures. GPS collected data points were gathered for locations of bars. The data and research done on the horizontal front will be used as base data to assist and provide the third dimension in the sedimentological analysis of a modern point bar made by Blake Warwick, which was the primary objective of the data and research gathered.

View Poster

GEOL2017GOMEZ40480 GEOL

PROVENANCE OF CENOZOIC CLASTIC SEDIMENTS IN THE TACHIRA SADDLE, WESTERN VENEZUELA, AND IMPLICATIONS OF SEDIMENT DISPERSAL PATTERNS IN THE NORTHERN ANDES

Type: Graduate
Author(s): Ali Ricardo Gomez Geology
Advisor(s): Xiangyang Xie Geology
Location: Session: 1; 1st Floor; Table Number: 7

poster location

Northwestern South America is highly deformed due to the transpressive boundary with complex interactions among the Caribbean plate, the South American plate, the Nazca plate and the Panama arc. Previous studies suggest that the Cenozoic uplifting of the Mérida Andes and Eastern Cordillera of Colombia affected sediment dispersal patterns in the region, shifting from a Paleocene foreland basin configuration with an axial major fluvial system, to the modern configuration of isolated basins with distinctive sediment dispersal patterns. Well-exposed Cretaceous to Pliocene strata in the Táchira saddle between the Easter Cordillera and Merida Andes provide a unique opportunity to test proposed sediment dispersal patterns in the region. U-Pb detrital zircon geochronology and supplementary XRD heavy mineral identification were used together to document provenance of Cretaceous to Pliocene clastic rocks collected from the area of La Alquitrana. Results from the U-Pb detrital zircon geochronology show that there are six age groups recorded in this samples. Two groups related with Precambrian Guyana shield Terranes and Putumayo basement in the Eastern Cordillera, and four groups related to different magmatic episodes during the Andean Orogenic process. Three major paleogeography changes were also recorded in these detrital signatures, including a transition between the Cretaceous passive margin and the Paleocene foreland basin, the initial uplifting of the Eastern Cordillera with the isolation the Llanos Basin and Táchira Saddle from the Central Cordillera and the Magdalena Valley in the Early Oligocene, and the uplifting of the Mérida Andes by the Early Miocene. The outcomes of this study emphasize the importance of the Mérida Andes and Eastern Cordillera Uplift in controlling the evolution of the sediment dispersal patterns in northern South America and represent a contribution in the understanding of the paleogeographic evolution in the region.

View Poster

GEOL2017HOWE26318 GEOL

The Architecture and Connective Potential of Blowout Wings in Fluvio-Deltaic Environments

Type: Graduate
Author(s): Tyler Howe Geology
Advisor(s): John Holbrook Geology
Location: Session: 1; 2nd Floor; Table Number: 7

poster location

Fluvio-lacustrine systems are prone to experiencing significant flood events separated by longer low energy periods. During low flow, sediment is stored upstream of the lake as mid-channel and side-attached bars. During high-discharge events, water level rises above the topographically low delta front levees, the turbulent jet of the river is positioned upstream of the levee terminus where levees are less confining, and the previously stored sediment is flushed from the channel into the lake basin laterally as sheets. This process forms a laterally extensive, well sorted wedge shaped deposit of fine grained sand called a blowout wing (after Tomanka, 2013). These wings are documented in the ancient within the Kayenta Formation, UT, where the sand wings demonstrated a significant increase in connectivity between statistically clustered fluvio-lacustrine channel belts. In this research, we document two examples of blowout wings forming in the modern. The first example is a lake sourced by a mud dominated river (Denton Creek, Lake Grapevine, TX), and the second is a lake sourced by a sandy, bedload dominated river (Red River, Lake Texoma, TX). Wings are composed of fine to medium grained, well sorted, and clean sand. The deposits are thin and laterally continuous, with measured thicknesses of 5-10 cm that thin away from channel axis. Wings have an aerial extent up several hundred meters, scaling to 4-6 times the channel width. The Red River at Lake Texoma has a channel width of 125m and deposits wings with an aerial extent of 250-350m long along the levee of the delta channel and 300-500m laterally. As the Red River has prograded into the basin, 5-6 individual blowout wings form a wing complex 1500m long and 500-600m laterally from the channel. Denton Creek at Lake Grapevine has a channel width of 25m and deposits wings on the order of 50-125m along the levee of the delta channel and 60-150m laterally. Three wings at Lake Grapevine form a wing complex 300m long and 100-150m laterally. The amalgamation and statistical clustering of fluvio-deltaic channel belts is increased by the presence of blowout wings, resulting in higher total reservoir size and connectivity. Blowout wings should be, and are, found in modern systems and subsequently the rock record recording fluvio-lacustrine environments of deposition.

View Poster

GEOL2017MCGREGOR60725 GEOL

Humid terminal splays as sand-sheet reservoirs: A first look at the modern, Andean foreland, and a new look at the ancient, Raton Basin

Type: Graduate
Author(s): Graham McGregor Geology Robert Horner Geology Paula Santi-Malnis Geology
Advisor(s): John Holbrook Geology
Location: Session: 2; 1st Floor; Table Number: 2

poster location

Thin sand sheets presumed to be terminal splay bodies have potential to serve as hydrocarbon reservoirs. The few studies of terminal splays managed from arid systems has provided insight, but ground study of the humid equivalent is lacking. Deposited in the distal zone of a distributary fluvial system (DFS), the splay bodies are formed as rivers terminate from loss of slope into unconfined dispersive flow and deposit bed load as splays and advect mud to more distal floodplains. The splay sheets and floodplain together provide potential for both reservoir and seal. We examined terminal splay deposits in a modern humid terminal splay system, Andean foreland of northern Argentina, and in ancient foreland deposits, Paleocene Raton Formation of the Colorado Raton Basin. I am going to compare the two locations in terms of grain-size, sedimentary structures, geometry, and scale and see how they relate. I hypothesize that the two are going to have similar grain sizes, and that the sedimentary structures and geometries will also be analogous but expect them to be scaled down in the Raton Basin.
The modern splay in Argentina is nearly 1.3 km wide and 1.9 km long and was deposited during a single large flood in 2012. Cross sections generated by hand augers show a maximum thickness of 0.8 m, an average of 0.5 m, and a consistently very fine-grained to lower medium-grained sand texture throughout. Total sand deposited in the flood event is ~ 1.2 million cubic meters (~2.0 million cubic meter maximum), and accumulates over earlier splay deposits separated by weakly developed soils that are locally removed by splay incision. Subsequent dissection of the splay permits examination of sedimentary structures, which are dominantly climbing ripples, planar laminations, and cross sets, but climbing antidunes are locally found near the splay apex. Ancient terminal splays of the Raton Formation are made of thinner sand sheets (~0.25 m) and tend to have thicker muddy floodplain deposits between. Grain-size distribution, sheet geometry, and sedimentary structures however are consistent between the modern and ancient examples. Both the Argentina and Raton examples reflect the distal end of a humid Distributive Fluvial System, however, the Raton system appears to have been of smaller scale. This is consistent with the comparatively smaller scale of the Raton vs. Andean tectonic system.

View Poster

GEOL2017MCGUIRE35162 GEOL

U-Pb Detrital Zircon Signature of the Ouachita Orogenic Belt

Type: Graduate
Author(s): Preston McGuire Geology
Advisor(s): Xaingyang Xie Geology
Location: Session: 1; B0; Table Number: 2

poster location

The Late Paleozoic Ouachita fold-and-thrust belt extends from the southern terminus of the Appalachian thrust belt in eastern Mississippi up through central Arkansas, southeastern Oklahoma, and Texas terminating in northeastern Mexico. A series of Carboniferous foreland basins were formed sequentially to the thrust front. The interaction between the Laurentian craton and the Appalachian-Ouachita orogenic belts controlled sedimentation in the southern midcontinent region throughout the Paleozoic. In contrast to the Appalachian orogenic belt to the east, the Ouachita orogenic belt and associated sediments remain poorly documented and less constrained.
In this study, seven Ordovician to Mississippian aged clastic units from the Ouachita Mountain in central Arkansas were sampled and tested using U-Pb detrital zircon geochronology. Three major age peaks are prominent, including the Grenville Province (~0.95-1.2 Ga), the Granite-Rhyolite Province (~1.3-1.5 Ga), and the Superior Province (>~2.5 Ga) in Ordovician to Silurian aged rocks. A change in this signature becomes clear at the beginning of the Carboniferous from Early Mississippian Stanley Group samples showing the additional Paleozoic age peak (~490-520 Ma) potentially derived from the Appalachian orogenic belt to the east, and/or from peri-Gondwanan terranes accreted to Laurentia just before the collision with Gondwana. This stratigraphic variation of detrital zircon age signature suggests that the transition from a passive to an active margin in the Ouachita trough started, at the latest, in early Mississippian times. Results of this study is the first systematic study of the U-Pb detrital zircon signature of the Ouachita orogenic belt and have important implications in sediment dispersal, provenance interpretations, and paleogeography reconstructions in North America, especially in the southern mid-continent and surrounding areas.

View Poster

GEOL2017TROSTLE15055 GEOL

GIS Based Site Evaluation for Construction of Single Family Homes in Edna, TX

Type: Undergraduate
Author(s): William Trostle Geology
Advisor(s): Tamie Morgan Biology
Location: Session: 1; 3rd Floor; Table Number: 7

poster location

A GIS site assessment and building plan was performed on approximately 60 acres located near Edna, Texas. The property surrounds a 5 acre lake with three existing small houses facing the lake. The site assessment evaluated the potential for construction of additional single story 2 bedroom homes. Using aerial photography, digital elevation data, and a soil survey; a map of the project area and site conditions was created. Elevation and soil suitability were used to determine drainage and suitability of the soil for foundation support. Color aerial photography was essential in developing layout of boundaries, existing structures and lake location. A viewshed analysis from the front porch of each of the proposed new structures was performed to evaluate the quality of view angle to the lake.

View Poster

GEOL2017WALKER20025 GEOL

Geochemistry of the Albian Kiamichi Formation of East Texas

Type: Undergraduate
Author(s): Jessica Walker Geology
Advisor(s): Richard Denne Geology
Location: Session: 2; 3rd Floor; Table Number: 1

poster location

This study involved the examination of core samples from the Lower Cretaceous aged Kiamichi Formation of the East Texas Basin in order to interpret its organic and elemental geochemistry using various techniques. The Kiamichi Formation may have the potential to be a source rock for hydrocarbons, and may be a plausible target for oil and gas companies to produce using unconventional techniques. Since this formation has yet to be thoroughly analyzed, this project has lead to further understanding of its potential by using techniques such as handheld x-ray fluorescence tool to estimate for the abundance of rare earth elements and trace metals, as well as a CHNS analyzer to determine the amount of organic carbon of the formation. Upon completion of the sample analysis, this geochemical information about the Kiamichi Formation provides beneficial information for further research on the overall Kiamichi Seaway.

View Poster

GEOL2017WEISS46635 GEOL

A POTENTIAL EXTENSION OF THE BARNETT SHALE OIL PLAY: A SUBSURFACE PLAY ANALYSIS OF THE MISSISSIPPIAN (OSAGEAN-MERAMECIAN) STRATA IN SHACKELFORD COUNTY, TEXAS

Type: Graduate
Author(s): Jonathon Weiss Geology
Advisor(s): Xiangyang Xie Geology
Location: Session: 2; B0; Table Number: 6

poster location

Repeatable, unconventional Barnett Shale completions have been constrained to the gas-rich, eastern portion of the play in Fort Worth Basin due to the presence of fracture barriers protecting the play from unwanted water production from the underlying Ellenburger Group. This project conducts a subsurface study on the Mississippian-aged strata (Chappel Limestone through the Barnett Shale) within the oil-rich, western extent of the Barnett Shale play in Shackelford County, Texas. The subsurface study results identify two distinct depositional mechanisms of facies within the Chester Limestone that overlap to give play potential for oil-rich Barnett Shale completions west of the Viola pinchout in the Bend Arch-Fort Worth Basin area. The basal portion of the Chester Limestone is referred to as the “Mississippian Shale”, and it shows potential to act as a fracture barrier that could prevent downward fracture growth into the Ellenburger in areas with widespread deposition and significance difference in rock mechanics (ductile) from the upper cherty section (brittle). Subsurface correlations were done utilizing over 100 wells that contained gamma-ray (GR) and bulk density (RHOB) within the 64 sq mi AOI (area of interest). Rock mechanics were tested utilizing the Equotip Bambino micro-rebound hammer and by observing the difference in RHOB of the play units. The main conclusions of this study include: (1) the identification of the “Mississippian Shale as a potential fracture barrier for the Barnett Shale play to potentially extend the play in to the oil window; (2) sweet spot maps that identify areas with the most geologic potential to prevent downward growth of stimulation fractures into the Ellenburger in areas related to the growth of the Chappel reefs; (3) the identification of differences in depositional controls in the Chester Limestone and the “Mississippian Shale” that leads to identifying areas of overlap that enhance the play potential.

View Poster

GEOL2017WILLIAMS23742 GEOL

FRACTURE ANALYSIS AND MAPPING OF THE CRETACEOUS BOQUILLAS FORMATION, BLACK GAP WILDLIFE MANANGEMENT AREA, BREWSTER COUNTY, TX

Type: Graduate
Author(s): John Williams Geology
Advisor(s): Helge Alsleben Geology
Location: Session: 1; B0; Table Number: 7

poster location

The Eagle Ford Shale in south Texas is one of the most prolific unconventional hydrocarbon plays in the world (Breyer, 2016). In 2015, natural gas and oil from this field hit peak production numbers at 5,539 MMcf (million cubic feet) and 1,118,648 Bbl (barrels) per day, respectively (Texas RRC, 2016).  In order for this low-permeability formation to produce, companies are using hydraulic fracturing, a stimulation treatment used in low-permeability rock whereby fluids are pumped at high pressures into reservoirs, causing new fractures to form and possibly reactivating existing fractures (Schlumberger, 2016).  The aim of this study is to identify any geomechanical and geochemical properties that optimize fracture connectivity within the Boquillas Formation, the West Texas Eagle Ford equivalent.  Energy-dispersive x-ray fluorescence (ED-XRF) and strength/hardness data from this study suggests that fracture frequency and length are affected by the clay and calcium carbonate content, and, by inference, the strength of the rock. 

View Poster