SciCom(

I. Introduction

Cerium (IV) oxide, CeO₂, is of significant research interest due to its dual Ce³⁺/Ce⁴⁺ oxidation states. Addition of trivalent ions, such as Ce^{3+} or Eu^{3+} , into the CeO_2 lattice results in a metal oxide with a high number of oxygen vacancies.¹ The oxygen vacancies, along with the energetically available transition between the two states, allow CeO₂ to act as an antioxidant as well as mimic several enzymes such as catalase and superoxide dismutase.² This activity, along with fluorescence from Eu³⁺ makes Eu³⁺-doped CeO₂ (EuCeO₂) nanomaterials potentially useful as probes in biological systems.

Figure 2. Synthetic route for fabrication of Eu-CeO₂ nanorods, nanocubes, and nanowires

EuCeO₂ nanorods were annealed in a tube furnace for 2 hr at 700°C then cooled to room temp.

Fluorescence imaging was recorded with a Nikon fluorescent microscope with an excitation wavelength of 370nm, and fluorescence spectra were recorded by an Ocean Optics spectrometer with an acquisition time of 200ms.

Eumelanin Studies

All eumelanin experiments were performed in water with pH of 10, adjusted using NH₄OH, unless otherwise indicated. EuCeO₂ nanomaterials were sonicated for 3 minutes using Branson Sonifier 450 sonication probe, 20 % power output and 60% cycling, prior to mixing with L-DOPA stock sol'n.

Figure 3. Synthesis and fluorescence of eumelanin. Fluorescence λ_{ex} =375 nm and λ_{em} =471 nm, with emission measured from 400 nm to 600 nm.

Suppression of Melanin Synthesis by Europium Doped Cerium Oxide Nanomaterials Anne D'Achille, Jeffery L. Coffer Department of Chemistry, Texas Christian University, Fort Worth, TX 76129

Fluorescence Sol'n 40 μM L-DOPA 46.4 μ M EuCeO₂

Crystalline nanorods, nanocubes, and nanowires were all produced with the desired morphology, as shown in Figure 3. The nanorods and nanocubes did form dense aggregates along with the desired morphology, as shown in Figure 3. The %Eu content was controlled by manipulation of the Eu³⁺ precursor concentration.

(1) Nanomaterial Characterization-TEM

Figure 5. Progression of fluorescence associated with formation of (a) eumelanin and (b) eumelanin in the presence of EuCeO₂ nanorods.

III. Results

	Fluorescence) -
	at 15 mir
	(A) Eumelanin Synthe
	300
	400 400
	300 Ter
	0 10 20 T
	Figure 6. (a) Raw
	ture on the prod
	(A) Eumelanin Produ
	(¹²)
	୍ଟି ଅଧ୍ୟ
	escel escel
	lized
	2 0 20 Tim
	Figuro 7 Dlote
	and (
	EuCeO2 nanorods an
•	EuCeO ₂ nanorods an
•	EuCeO2 nanorods an in the nanorods was
•	EuCeO2 nanorods an in the nanorods was EuCeO2 nanowires v
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression.
•	EuCeO ₂ nanorods and in the nanorods was EuCeO ₂ nanowires w L-DOPA oxidizes over Increased pH is nece ture increases the react The presence of EuC with eumelanin. Na suppression.
•	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat
	EuCeO ₂ nanorods and in the nanorods was EuCeO ₂ nanowires w L-DOPA oxidizes over Increased pH is nece ture increases the react The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat
•	EuCeO ₂ nanorods and in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the react The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat
	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne
	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo
	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo
	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo sion, fluorescence life
	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo sion, fluorescence lif posite properties.
	EuCeO ₂ nanorods and in the nanorods was EuCeO ₂ nanowires w L-DOPA oxidizes over Increased pH is nece ture increases the react The presence of EuC with eumelanin. Nat suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo sion, fluorescence lift posite properties.
	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo sion, fluorescence lif posite properties.
	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo sion, fluorescence lif posite properties.
	EuCeO ₂ nanorods and in the nanorods wass EuCeO ₂ nanowires w L-DOPA oxidizes over Increased pH is necess ture increases the resonance of EuConstant with eumelanin. National suppression. The Eu ³⁺ concentrate Unannealed nanored nanocubes and anness Future work will for sion, fluorescence life posite properties.
	EuCeO ₂ nanorods and in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes over Increased pH is nece ture increases the react The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo sion, fluorescence lift posite properties.
	EuCeO ₂ nanorods and in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes over Increased pH is nece ture increases the react The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo sion, fluorescence lift posite properties.
	EuCeO ₂ nanorods and in the nanorods wass EuCeO ₂ nanowires w L-DOPA oxidizes over Increased pH is necess ture increases the resonance of EuConstant The presence of EuConstant with eumelanin. National suppression. The Eu ³⁺ concentrate Unannealed nanoro nanocubes and anne Future work will for sion, fluorescence lift posite properties.
	EuCeO ₂ nanorods an in the nanorods was EuCeO ₂ nanowires v L-DOPA oxidizes ove Increased pH is nece ture increases the re The presence of EuC with eumelanin. Na suppression. The Eu ³⁺ concentrat Unannealed nanoro nanocubes and anne Future work will fo sion, fluorescence lif posite properties.

III. Results (cont.)

 $_{c}$ =375 nm and λ_{em} =471 nm, and reported as normalized to the sample's emission nutes. Control samples are L-DOPA in the absence of any nanomaterial.

v fluorescence intensity at 471 nm, showing influence of pH and temperaduction of eumelanin, and (b) normalized fluorescence showing impact of nanorod concentration.

s normalized fluorescence showing the influence of (a) Eu³⁺ concentration, (b) EuCeO₂ nanomaterial morphology on synthesis of eumelanin.

IV. Conclusions

nd nanocubes were synthesized by a hydrothermal route. Fluorescence s activated by annealing to 700 °C.

- were synthesized by an electrospinning and annealing route.
- ver several days, as tracked by fluorescence between 470 nm and 540 nm.
- essary for the production of eumelanin. Increasing the reaction temperaeaction rate, but is not necessary for production of the pigment.
- CeO₂ nanomaterials significantly suppresses the fluorescence associated anorod concentrations down to 0.2 mg/mL showed significant eumelanin
- tion in nanorods did not significantly impact eumelanin fluorescence
- ods and nanowires showed comparable eumelanin suppression, with ealed nanorods showing weaker suppression.
- ocus on analysis of mechanism behind eumelanin fluorescence suppresifetime measurements, and analysis of potential EuCeO₂/eumelanin com-

V. Literature Cited

Asia Materials, **2014**, 6, 1-16

- ; Karakoti, A.S.; Schulte, A.; Seal, S. *Langmuir* **2009**, *25*(18), 10998–11007 , S.; Mano, C. M.; Weiner, A.B.; Bacchiocchi, A.; Wakamatsu, K.; Bechara, E.J.H.; Halaban, R.; Douki, T.; Brash, D. E. Science **2015**, 347 (6224), 842-847
- 4. Sutter, J. ; Birch, D. *Methods Appl. Fluoresc.* **2014**, *2*, 024005