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(This introduction to simplicial homology is based on [2]).

In order to study the shape of our data, we need to have some idea of connected components. In topology, we can determine the
number of components of a simplicial complex. Informally, a simplicial complex is a collection of simplices with a couple qualifying 
conditions. To fully understand the definition of a simplicial complex, we first need to understand simplices. A 0-simplex is a point, 
a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, etc. Let’s look at some examples:

In figure 1, there exist three 0-simplices and one 1-simplex. In figure 2, there exist five 0-simplices, six 1-simplices, and zero 2-
simplices. The “rabbit ears” formed in figure 2 are not 2-simplices as the triangles are not filled. Now that we have an understanding 
of simplices, we can define a simplicial complex:

Def. A simplicial complex K is subspace of Rn together with a finite list of simplices such that:
1. The union of the simplices is the set K and each point in K lies in the interior of only one complex;
2. Every face of every simplex in the list is also a list.

Essentially, a k-simplex is described by a list of k+1 vertices v0,…,vk (points in some Rn). To ensure that our k-simplex is actually k-
dimensional, we assume each of these vertices are in general position. Thus we define a k-simplex as the smallest convex subspace 
of Rn containing a given list of k+1 vertices in general position, written as [v0,…,vk]. We require that each vertex has dimension no 
greater than k-1. If a vertex has dimension v-1, call it a face. Next, we want to further describe a simplicial complex by defining its 
boundary:

Def. Given a simplicial complex K, define Sn(K) as the set of all n-simplices of K. Define the boundary of each element in Sn(K) as the 
list of elements in Sn-1(K).

To illustrate this definition, consider our 2-simplex, call it J:

We can write J = [a,b,c]. Not that S2(J) = {[a,b,c]}. Then, the boundary of J is S1(J) = {[a,b], [b,c], [a,c]} = the line segments (1-simplices) 
forming the 2-simplex. We want to form a boundary operation Sn(K)        Sn-1(K). However, the boundary of Sn(K) is a list of simplices, 
not a single simplex. So, we need some new terminology.

Def. Let Cn(K) be the collection of all subsets of Sn(K). Note that the boundary of an n-simplex is in Cn(K).

Another way to interpret Cn(K) is that it is the Z/2 vector space spanned by Sn(K). Thus, we can now define a boundary operation:

Def. Call the linear transformation 𝛿n: Cn(K)         Cn-1(K) the boundary operator, given by the formula 

𝛿n[v0,…,vn] =  𝑖=0
𝑛 [𝑣0, … ,  𝑣𝑖, … , vn]

For example, let’s apply 𝛿n to our 2-simplex, J:
𝛿n[a,b,c] = [b,c] + [a,c] + [a,b]

We can compose these boundary operations to form the chain complex:

…        Cn(K)        Cn-1(K)        Cn-2(K)        …         C1(K)        C0(K)

Now we have a way to detect simplices that could be boundaries. This is the basis of homology, which we shall define:

Def. The nth homology group of a simplicial complex K is the quotient

Hn(K) = Zn(K) /  Bn(K)

with Zn(K) = Ker𝛿n , which we will call cycles (all possible candidates for the boundary). Define Bn(K) = Im𝛿n+1 , which is the set of all 
boundaries of an n+1simplex.

The homology of K is the collection H*(K) = {H0(K), H1(K), H2(K),…}

For convenience, define Z0(K) = C0(K). 

To better understand this, let’s look back at Figure 1, our first example. Let’s call this complex M.

Since the highest degree simplex is 1, we can just examine C1 C0.
Observe that dim C0 = 3 (there exist three 0-simplices) and dim C1 = 1 (there exists only one 1-simplex). When we apply 𝛿1 to C1, we 
see that it is mapped to the addition of the two 0-simplices creating the 1-simplex. Thus, Im 𝛿1 = 1. Therefore, dim H0 = 
= dim [C0 / Im 𝛿1] = 3-1 = 2. This is the number of connected components. From a similar computation, we find that H1 = 0. 
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Persistent Homology
One way to perform cluster analysis is to define a simplicial complex on a data set and determine its connected components. A 
simplicial complex can be defined by connecting two points in the data with an edge if there pairwise distance is less than some

value ε and then completing the complex by filling in any higher dimensional faces. By varying ε the data can then be studied at 
various scales. For example, consider the following set of nested simplicial complexes:

What persistence homology analyzes is how long certain simplices persist, i.e. the amount of time for which they exist. For this 
example, we could represent our initial dataset with a pairwise distance matrix. We can then create a persistence and barcode
diagram, which we will learn to interpret in the analysis section.
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To study personality structure, psychologists have commonly applied clustering techniques on questionnaire data. In [2], Costa et. al performed cluster analysis with the Cattell’s 
Sixteen Personality Factor Questionnaire. The subjects were 969 adult male volunteers divided into three age groups: 25 to 34, 35 to 54, and 55 to 82 (from now on we shall call
these the young, middle, and old age groups respectively. Below is a table outlining the personality traits measured by the 16PF Questionnaire (adapted from [3]): 

Primary Factor Descriptors of Low Range Descriptors of High Range Primary Factor Descriptors of Low Range Descriptors of High Range

Warmth (A) Reserved, detached, formal Warm, outgoing, easy-going Vigilance (L) Trusting, accepting Suspicious, skeptical

Reasoning (B) Concrete thinking, unable to 
handle abstract problems

Fast learner, abstract-thinking Abstractedness 
(M)

Solution-oriented, steady, 
conventional

Imaginative, absent minded, 
impractical

Emotional 
Stability (C)

Reactive emotionally, easily 
upset, changeable

Emotionally stable, adaptive, 
mature

Privateness (N) Open, guiltless, naive Discreet, non-disclosing, shrewd, 
astute 

Dominance (E) Cooperative, humble, 
obedient, accommodating

Dominant, forceful, assertive,
aggressive

Apprehension 
(O)

Self-assured, unworried, 
confident

Self doubting, worried, insecure

Liveliness (F) Serious, restrained, 
introspective

Animated, spontaneous, 
enthusiastic, impulsive

Openness to 
Change (Q1)

Traditional, conservative Experimental, liberal, free
thinking

Rule-
consciousness (G)

Expedient, self-indulgent, 
nonconforming

Dutiful, conscientious, 
conforming, moralistic

Self-Reliance (Q2) Group-oriented, affiliative Solitary, resourceful, 
individualistic 

Social Boldness 
(H)

Shy, timid, hesitant Venturesome, thick skinned, 
uninhibited

Perfectionism 
(Q3)

Tolerates disorder, flexible, 
impulsive

Organized, compulsive, self-
disciplined

Sensitivity (I) Objective, self-reliant Sentimental, tender Tension (Q4) Relaxed, tranquil, patient High energy, driven, frustrated

Analysis
The authors of [2] provided us with a pairwise correlation matrix for the questions 
[A,B,C,…,Q3,Q4]. We converted these to a pairwise distance matrix by taking the 
absolute value of the correlations * 100 and subtracting them from 100.

For example, a correlation coefficient of .45 would represent a distance of 55 in 
our matrix: (100 – (|.45|*100)). 

A correlation of -.90 would have a distance value of 10 in our matrix: 
(100 – (|-.90|*100)). 

We did this to say that two variables are far away from each other if their 
correlation is weak (i.e. near 0). Once this matrix was created, we utilized the TDA
package [4] in R to create the persistence diagrams and barcodes to the right.

The persistence diagram visualizes the “birth” and “death” of each variable in our 
matrix. Since our questionnaire has 16 questions, we have 16 variables. Since all of 
our variables exist from the beginning, they all have a birth value of 0. The death 
value of a variable is the “time” a component “dies”. In the context of persistent 
homology, this represents the distance parameter ε such that a component 
connects to another component. Note that all points in the plot must lie above the 
birth-death line; a variable cannot die before it is born. The red triangles in the 
persistence diagram represent topological holes in the dataset, which may or may 
not have psychological significance.

The barcode diagram visualizes how many connected components exist at a 
specific time t. Each black bar represents a connected component, and the total 
number of black bars represent the number of connected components. For 
example, at t=0, each barcode has 16 bars, which makes sense since we started with 
16 variables. The length of the black bar represents how long a component persists. 
When some component connects to another, we lose one black bar. At t=100, we 
expect to have only one black bar remaining, since every variable should be 
connected. The same can be said for any red bars; these represent the existence 
and persistence of any topological holes.

To gain a better understanding of these diagrams, let’s analyze the barcode for the 
young age group. At t = 0, we have 16 bars, as to be expected. As t passes through 
the high 20’s, we see that we lose two black bars. This corresponds with the two 
points in the persistence diagram; the components “die” at this time. We interpret 
this as two different components connecting with another component at this 
distance parameter. Thus, we go from 16 to 14 connected components. Once t is 
approximately in the mid-70s, we see that we have only three black bars left. This 
means that there exist only three connected components in our simplicial complex.

After creating our persistence diagrams, we wanted to be able to analyze which 
components were connected at a specified distance parameter. To do this, we 
created a function that transformed our pairwise distance matrix into an adjacency 
matrix. If two components are further than a specified distance d, we say that they 
are not connected and enter a 0 into that entry of the matrix. If two components 
are within distance d of each other, we say that they are connected and enter a 1 
into the matrix. This creates an adjacency matrix for a specified distance.

Utilizing the igraph library [5] in R, we converted the adjacency matrices into 
graphs. This allowed us to determine which components were connected at the 
specified distance. This is how we formed our clusters; we can even specify the 
correlation value at which each cluster is created. “Important” results are listed in 
the three tables below.

Let’s analyze the “important” distances for the young age group. At d = 0 
(correlation coefficient of +/- 1.00), all variables are singletons. This means that 
there are 16 “clusters”, but each contain only one point (hardly a cluster). At d = 40, 
we see that there is a significant cluster forming. The variables C, O, Q3, and Q4 
form a cluster for correlation coefficients of +/- .60. All other “clusters” are 
singletons. At d = 59 (correlation of +/- .41), we see that there are now three 
significant clusters. These persist until d = 65, at which the first and second cluster 
connect. This indicates that, for the young age group, personality structure appears 
to follow a three-cluster (or three-factor) model. At d = 81 we have one connected 
component.

While the tables are useful, we would like to be able to visualize the clusters at 
certain distance parameters. To do so, we simply plotted the graphs formed from 
the respective adjacency matrices. Observe the following graphs:

*All computations were done in the statistical computing language R.

For the young age group, 
we visualize the graphs 
for d = 59 and d = 65. 

For the middle age group, 
we visualize the graphs 
for d = 53 and d = 58. 

For the middle age group, 
we visualize the graphs 
for d = 57 and d = 59. 

Note: These graphs DO NOT accurately represent distance between components nor their “location”. This visualization 
simply shows which components are connected. While this may not accurately portray distance, it does give us some 
information though. For example, in the old age group graph for d = 57, since E is connected to F but not connected I, 
we can say that the distance from E to I is greater than the distance from E to F. However, these graphs do not 
accurately portray how much father E is from I.

Comparisons and Conclusion
In [2], the authors claim that each age group can be defined by three clusters. They claim that the first two clusters 
remain relatively the same regardless of age, and that the third cluster changes significantly. We compare these to what 
we find to be the most significant clusters:

Based on our analysis, we agree with the statement that the first two clusters change very little with respect to age. 
However, we claim that, for the middle and old age groups, the dataset is best described by two clusters rather than 
three. As we can see in the graphs, for the middle and old age groups, the first two clusters connect before a third 
cluster is even formed. This seems to support our claim that the last two age groups fit a two-cluster system better.

There are still questions of how to interpret these clusters and the psychological significance of this cluster-based 
approach. Similarly, we can ask questions about the psychological significance of the topological holes found in the 
dataset. However, what we can say is that there appears to be a difference in personality structure based on age. In 
future analyses we plan to analyze further the relationship between personality and age.

Their Clusters Our Clusters (with d)

Young Age Group [C,O,L,Q3,Q4], [A,E,F,H,Q2], [I,M] [C,O,L,Q3,Q4], [A,E,F,H,Q2], [I,M] (d = 59)

Middle Age Group [C,L,O,Q3,Q4], [A,E,F,H,Q2], [M] [C,L,O,Q3,Q4], [A,E,F,H] (d = 53)

Old Age Group [C,G,L,O,Q3,Q4], [A,E,F,H,Q2], [B,I,M,Q2] [C,L,O,Q3,Q4], [A,E,F,H,Q2] (d = 57)
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