

Effects of social isolation on LPS-induced hippocampal amyloid-beta expression and cognitive dysfunction in C57BL6/J male and female mice

Frediani, G.¹, Donaldson, R. E.¹, Peterman, J. L.², Eimerbrink, M. J.², White, J. D.², Hagen, C.¹, Curtis, M.¹, Boehm, G. W.², & Chumley, M. J.¹

¹Department of Biology, Texas Christian University ²Department of Psychology, Texas Christian University

Psychological stress afflicts a considerable portion of the world's population, and is linked, as both a risk factor and potential contributor, to dementia-related brain dysfunction in diseases such as Alzheimer's disease (AD). The brain dysfunction in AD is marked by an increase in amyloid-beta, a protein that accumulates into plaques in the brain, and increased inflammation. The present study aimed to explore how stress may alter inflammation and the production of amyloid-beta. Specifically, we were interested in social isolation as a stressor and its impacts on inflammation-induced amyloid-beta production as well as cognition, and how this may differ in male and female mice.

Introduction

- Alzheimer's disease (AD) is a neurodegenerative disorder that affects nearly 5.3 million Americans, and there is currently no cure (1).
- AD is characterized by amyloid-beta (A β) plaques in the brain (2).
- Neuro-inflammation is known to play a role in the pathogenesis of AD (3).
- Lipopolysaccharide (LPS) induces systemic inflammation and causes cognitive impairment by enhancing beta-amyloid generation (3).
- Systemic inflammatory responses may contribute to the outcome or progression of neurodegenerative disease (4).
- Research has shown that psychological stress is associated with the body losing its ability to regulate the inflammatory response which can promote the development and progression of disease (5).
- Our hypothesis is that isolated animals will demonstrate cognitive deficits in CFC as well as increased brain amyloid-beta following LPS injections.

Methods

- Mice were subjected to acute social isolation (6 days) or chronic isolation (28 days) or control group housing followed by LPS (250 μg/kg) or saline injections
- A subset received one injection of LPS or saline and IL-1β levels were assessed
- The remaining mice received 7 total, once daily injections of LPS or saline and then tested for cognition using contextual fear conditioning (CFC).
- CFC measures the freezing response that takes place following pairing of a mild aversive stimulus with a novel context.
- Brain tissues were extracted and $A\beta$ protein levels were assessed.

CFC Paradigm

6 Day Isolation Timeline

Brain Tissue Extractions

Conclusion

Group Housing

- Male mice subjected to 6 or 21 days of isolation did not show differences in Aβ levels compared to group-housed mice. This suggests isolation stress did not effect Aβ production in males, despite previous research linking stress and Aβ accumulation (6).
- IL-1β levels were significantly elevated following isolation stress in male mice given LPS. This demonstrates that isolation stress does increase the inflammatory response in males.
- Female and male mice showed similar trends in IL-1β levels. However, the female isolated and group-housed mice did not show statistically significantly differences. Further research is needed to determine if isolation has a greater impact on inflammation in males than females.
- Only 21 day isolation stress in males produced a significant deficit in cognition as assessed by CFC.
- Assessing the $A\beta$ levels in females will allow us to determine if there is a gender difference in $A\beta$ production following isolation stress.

Results

The Effect of 6 d Isolation and LPS on Hippocampal IL-1 β mRNA Expression in Males. Results from RT-PCR were normalized to β - actin prior to being normalized to our control group (Group Housed/Saline). Different letters (a, b, c) represent significant differences at p < .05. Bars represent mean \pm SEM

The Effect of 6 Days of Isolation on Cognition in Males following LPS administration. Results from CFC analysis demonstrate no significant differences between groups. Bars represent mean ± SEM.

The Effect of 6 Days of Isolation on LPS-Induced Hippocampal-A β levels in Males. A β ELISA reveals 7 d of LPS administration leads to significantly more A β compared to Saline-treated controls. Isolation does not exacerbate this effect. Bars represent mean \pm SEM

The Effect of 21 d Isolation and LPS on Hippocampal IL-1 β mRNA Expression in Males. Results from RT-PCR were normalized to β - actin prior to being normalized to our control group (Group Housed/Saline). Different letters (a, b, c) represent significant differences at p < .05. Bars represent mean \pm SEM

The Effect of 21 Days of Isolation on Cognition in Males following LPS administration. Results from CFC analysis demonstrate that isolation significantly impairs freezing behavior. Bars represent mean ±

The Effect of 21 Days of Isolation on LPS-Induced Hippocampal-A β levels in Males. A β ELISA reveals 7 d of LPS administration leads to significantly more A β compared to Saline-treated controls. Isolation does not significantly exacerbate this effect. Bars represent mean \pm SEM.

The Effect of 21 d Isolation and LPS on Hippocampal IL-1 β mRNA Expression in Females. Results from RT-PCR were normalized to β -actin prior to being normalized to our control group (Group Housed/Saline). Different letters (a, b, c) represent significant differences at p < .05. Bars represent mean \pm SEM. Ns = 10-12.

The Effect of 21 Days of Isolation on Cognition in Females following LPS administration. Results from CFC analysis demonstrate no significant differences between groups. Bars represent mean ± SEM.

References

- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Aging. (2016). *Alzheimer's Disease Fact Sheet*. (NIH Publication No. 6-AG-6423)
- Dickson, D. W. (1997). Neuropathological diagnosis of Alzheimer's disease: a perspective from longitudinal clinicopathological studies. *Neurobiol. Aging 18*, S21–S26. doi:10.1016/S0197-4580(97)00065-1
- Lee, J., et al. (2008). Neuro-Inflammation Induced by Lipopolysaccharide Causes Cognitive Impairment through Enhancement
- of Beta-Amyloid Generation. *Journal of Neuroinflammation*, *5*, 37. doi:10.1186/1742-2094-5-37

 4 Perry, V. H. (2004). The influence of systemic inflammation on inflammation in the brain: implications for chronic
- neurodegenerative disease. *Brain, Behavior, and Immunity, 18*(5), 407-413. doi:10.1016/j.bbi.2004.01.004
- 5 Cohen, S., et al. (2012) Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. *PNAS*, 109(16), 5995-5999. doi:10.1073/pnas.1118355109
- 6 Hongxin, D., & Csernansky, J.G. (2009). Effects of Stress and Stress Hormones on Amyloid-β Protein and Plaque Deposition. *J Alzheimers Dis*, 18(2), 459-469. doi:10.3233/JAD-2009-1152

Funding

This research was supported by an intramural CSE grant to G.F. and R.D.