

An Orbital-Overlap Complement to Atomic Partial Charge

Arshad Mehmood and Benjamin G. Janesko

Department of Chemistry & Biochemistry

Partial Charge and Reactivity

- Atomic partial charges obtained from computed wavefunctions are widely used for interpreting quantum chemistry simulations and chemical reactivities of molecules, solids, surfaces, and nanoparticles
- In many cases partial charge alone gives an incomplete picture of reactivity:1
- (1) PhS⁻ is a better nucleophile compared to PhO⁻ in S_N2 reactions with MeI, though PhO⁻ has a more negative charge on the nucleophilic atom
- (2) The carbons of benzene and cyclobutadiene, or those of diamond, graphene, and C_{60} , possess nearly identical partial charges and very different reactivities
- (3) Many nucleophiles attack α,β-unsaturated ketones at the softer β carbon, not at the more positively charged carbonyl carbon
- (4) Halide anions F⁻, Cl⁻, Br⁻ and l⁻ have identical charges but different nucleophilicities
- (5) Carbons in aromatic benzene and anti-aromatic cyclobutadiene have nearly identical partial charges, but different reactivities.

Orbital Overlap Distance $D(\vec{r})$

- The Orbital Overlap Distance $D(\vec{r})$ is constructed from the Orbital Overlap Range Function $EDR(\vec{r};d)$
- $EDR(\vec{r};d)$ quantifies the extent to which an electron at point \vec{r} in a calculated wave function overlaps over distance "d" ²⁻³

$$EDR(\vec{r};d) = \int d^{3}\vec{r}' g_{d}(\vec{r},\vec{r}') \gamma(\vec{r},\vec{r}')$$

$$g_{d}(\vec{r},\vec{r}') \equiv \rho^{-1/2}(\vec{r}) \left(\frac{2}{\pi d^{2}}\right)^{3/4} exp\left(-\frac{|\vec{r}-\vec{r}'|^{2}}{d^{2}}\right)$$

$$\langle EDR(d) \rangle = \int d^{3}\vec{r}' \rho(\vec{r}) EDR(\vec{r};d)$$

- $D(\vec{r}) = \arg\max_{d} EDR(\vec{r}; d)$
- Plots of $D(\vec{r})$ on density isosurfaces complements molecular electrostatic potentials
- The atomic overlap distance D_A , is defined as the average overlap length of electrons assigned to atom A

$$D_A = \int d^3\vec{r} \rho(\vec{r}) D(\vec{r}) w_A(\vec{r})$$

where $w_A(\vec{r})$ is the Hirshfeld weight for atom A.

- D_A complements computed Hirshfeld charges Q_A by measuring the size of orbital lobes that best overlap with the wavefunction around an atom
- Compact, chemically stable atoms tend to have overlap distances smaller than chemically soft, unstable atoms.

Combining Charge and Overlap Distance

• Combining atomic charges (Q_A) and overlap distances (D_A) captures trends in aromaticity, nucleophilicity, allotrope stability, and substituent effects.¹

System	Q _A (a.u)	D _A (bohr)
S in PhS ⁻	-0.561	2.021
O in PhO	-0.825	1.367
F-	-1.000	1.237
CI-	-1.000	1.934
Br-	-1.000	2.165
 -	-1.000	2.476
β-C in Butenone	-0.071	1.302
Carbonyl C in Butenone	0.173	1.183
C in Diamond	-0.003	1.543
C in Graphene	-0.002	1.586
C in C ₆₀	0.000	1.603

Capturing the Effects of Substituents

- Calculated in gas phase at B3LYP/6-31+G(d,p) level
- Relation is nearly linear within a substituent class, different substituents have different trends
- More negative $Q_{\mathbb{C}}$ give larger $D_{\mathbb{C}}$, as only relatively diffuse orbitals are available to hold added electron density
- Binding carbon to large, "puffy" bromine atoms makes its orbitals larger, giving a relatively large $D_{\rm C}$, whereas compact fluorine atoms makes the carbon orbitals smaller, giving a relatively small $D_{\rm C}$.

Atomic Overlap Distance and Aromaticity

• Aromatic benzene, non-aromatic hexatriene, and anti-aromatic cyclobutadiene have nearly identical $Q_{\rm C}$, their computed $D_{\rm C}$ clearly distinguish the relatively unstable, weakly bound, diffuse carbons of cyclobutadiene.

Non-trivial Predictions for Nanomaterials

- Calculated in gas phase at PW91/LANL2DZ level
- The outer Au atoms have unusually small $D_{\rm Au}$, while the central atom has an unusually large $D_{\rm Au}$
- Rationalizes a huge body of experimental and theoretical work on MAu₆ hexagons, in which the central atom is replaced with dopant M.

Surface Overlap Distance

- Plots of overlap distance $D(\vec{r})$ on molecular surfaces like electron or spin density isosurfaces captures chemical hardness/softness, acid-base interactions, halogen bonding and other σ -hole interactions
- Maximum surface value of $D(\vec{r})$ complements molecular electrostatic potential (ESP)

• $D(\vec{r})$ of thioformic acid plotted on 0.001 e/bohr³ electron density surface distinguishes chemically hard oxygen (red) from chemically soft sulfur (blue).

Capturing Trends in HSAB

Plotted on 0.001 e/bohr³ electron density surface⁴

• H⁺ being a hard and strong acid prefers MeO⁻ (small $D(\vec{r})$) over MeS⁻ (large $D(\vec{r})$) whereas Au⁺ which is a soft weak acid shows opposite behavior.

Lewis	ESP	$D(\overrightarrow{r})$	Interaction Energy (kcal/mol)	
Base	(a.u)	(bohr)	H+	Au+
MeO-	-0.256	3.081	394	427
MeS ⁻	-0.214	3.683	365	433
Me⁻	-0.231	4.238	429	481

Selectivity in Protein-Ligand Interactions

• Why gold-specific protein GolB, shows higher selectivity for Au⁺ over Cu⁺ though former has lower ESP?

• ESP of Au⁺ binding pocket plotted on 0.001 e/bohr³ electron density surface calculated at ONIOM(ωB97X-D/6-311g(d,p):AMBER) level⁴

- Overlap distance $D(\vec{r})$ plotted on 0.001 e/bohr³ electron density surface calculated at the same level of theory
- The gold-binding site (ESP=-0.293 au, $D(\vec{r})$ =3.692 bohr) is anionic, and has a large overlap distance
- Though Cu⁺ (ESP=0.304 au, $D(\vec{r})$ =1.789 bohr) is more positive compared to Au⁺ (ESP=0.270 au, $D(\vec{r})$ =2.030 bohr) but small $D(\vec{r})$ makes it a hard Lewis acid compared to Au⁺ which is a preferred candidate for this binding site.

Availability

- Multiwfn (http://sobereva.com/multiwfn/)
- Gaussian 16 (http://gaussian.com/gaussian16/)
- NCIplot (https://github.com/aoterodelaroza/nciplot)

Acknowledgment

National Science Foundation Award DMR-1505343

References

- 1. Mehmood, A.; Janesko, B. G. *Angew. Chem. Int. Ed.* **2017**, *56*, 6878–6881.
- 2. Janesko, B. G. et al. J. Chem. Phys., **2014**, 141, 144104.
- 3. Janesko, B. G. *et al. J. Chem. Theory Comput.*, **2016**, *12*, 79–91.
- 4. Mehmood, A. et al. Submitted.