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The game Konane, also known as Hawaiian checkers, is a two-player, zero-sum strategy board 
game ideally suited for this type of research. Players take turns making moves to capture an 
opponent’s piece. The game ends when a player does not have a move in which he can capture 
an opponent’s piece, and he loses the game. In order to have a successful strategy, a player must 
consider many future possibilities. Our research focussed on designing computer agents to play 
the game Konane using artificial intelligence techniques. Specifically, we aimed to create 
computer agents that utilized the minimax and minimax with alpha-beta pruning algorithms to 
select a move that would maximize the likelihood of winning the game. The outcome of this 
research will be an analysis of the effectiveness of each computing agent.

The Game Konane

Background:  
• Konane dates back to ancient Hawaii 

• Traditionally shells or pebbles are used as 
game pieces and the board is made out of 
stone with indentions carved to show where the 
game pieces should go 

• Board can be square or rectangular ranging 
from at least 6x6 to 18x18  

Gameplay: 
• Initially setup with game pieces filling every 

space in an alternating checkerboard pattern 

• Black removes one of his own pieces from a 
corner space or a space in the very center of the board 

• White then removes one of his own pieces adjacent to the now empty space 

• The two players take turns making moves that involve an orthogonal jump to capture an 
opponent’s piece until a player cannot make a legal move and they lose the game

The Minimax Algorithm

The minimax algorithm presents a strategy for choosing a move that will lead to a terminal state 
that is a win in the game Konane. This algorithm recursively searches the game tree depth first 
returning the utility value of terminal nodes and assigns a utility value to parent nodes 

Figure 1 shows a game tree for an arbitrary game. Each node represents a state in the game and 
each line is a move to get to the next state. A triangle indicates a MAX node in which is in MAX’s 
turn to move while a circle indicates that it is the MIN player’s turn. The numbers inside the 
shapes represent the utility value of that node. MAX will always choose a move that has a higher 
utility value while MIN prefers a lower value, as their names describe. 

minimax-value (n) = 
• utility (n)                                                                          if n is a terminal state 
• max action ∈ moves minimax-value(nextboard(action))         if n is a Max node 
• min action ∈ moves minimax-value(nextboard(action))          if n is a Min node

Once the algorithm reaches a leaf node which indicates a terminal state, the utility value of the 
node is returned.This value is then backed up through the tree and compared to other potential 
moves’ utility values. Depending on which player’s turn it is, an internal node’s utility value 
becomes either the minimum or maximum utility value of all the child nodes’ utility values.  

Alpha-beta pruning is an additional technique that can be used in combination with the minimax 
algorithm. This variant of the minimax algorithm should theoretically have the same statistical 
chance of winning as the basic minimax algorithm but be much more computationally efficient 
because it eliminates branches that cannot possibly influence the final decision. For example:  
minimax-value (root) = max( min(3, 12, 8), min(2, x, y), min(14, 5, 2) ) 
        = max( 3, min(2, x, y), 2) 
        = max( 3, z, 2)    where z ≤ 2 
        = 3 
In other words, even if we let z be the minimum of x and y, the minimax decision for the node root 
is independent of the values of x and y so we can prune away these branches.

Figure 1 - Game tree for an arbitrary 
game with the minimax values for each 

node shown
Figure 2 - Python code for 

minimax recursive algorithm

On an 8x8 game board, we evaluated a minimax agent and minimax with alpha-beta pruning 
agent both at a fixed depth of 5 against: 

• each other 
• a human agent (me) 
• an agent that selects a random move for the list of potential moves 
• an agent that selects a move based on the following criteria/strategy: 

- Avoid moving corner pieces 
- Move a piece that is in danger of being jumped 
- Avoid moving a piece that is not in danger of being jumped 
- Make a move that puts the player in a position to make a future move 

  

Then, we further compared the minimax agent and minimax with alpha-beta pruning 
agent at various fixed depths.

Results
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