
Minimax Agent Alpha-beta Agent

Wins against Human Agent: 100% 100%

Wins against Random Agent: 90% 91%

Wins against Strategy Agent: 89% 89%

Wins against other AI Agent: ~50% ~50%

Analysis of Artificial Intelligence Techniques for Konane
Kaitlin Hendrick

Advisor: Dr. Michael Scherger

Introduction The Minimax Algorithm Cont.

Evaluation

The game Konane, also known as Hawaiian checkers, is a two-player, zero-sum strategy board
game ideally suited for this type of research. Players take turns making moves to capture an
opponent’s piece. The game ends when a player does not have a move in which he can capture
an opponent’s piece, and he loses the game. In order to have a successful strategy, a player must
consider many future possibilities. Our research focussed on designing computer agents to play
the game Konane using artificial intelligence techniques. Specifically, we aimed to create
computer agents that utilized the minimax and minimax with alpha-beta pruning algorithms to
select a move that would maximize the likelihood of winning the game. The outcome of this
research will be an analysis of the effectiveness of each computing agent.

The Game Konane

Background:
• Konane dates back to ancient Hawaii

• Traditionally shells or pebbles are used as
game pieces and the board is made out of
stone with indentions carved to show where the
game pieces should go

• Board can be square or rectangular ranging
from at least 6x6 to 18x18

Gameplay:
• Initially setup with game pieces filling every

space in an alternating checkerboard pattern

• Black removes one of his own pieces from a
corner space or a space in the very center of the board

• White then removes one of his own pieces adjacent to the now empty space

• The two players take turns making moves that involve an orthogonal jump to capture an
opponent’s piece until a player cannot make a legal move and they lose the game

The Minimax Algorithm

The minimax algorithm presents a strategy for choosing a move that will lead to a terminal state
that is a win in the game Konane. This algorithm recursively searches the game tree depth first
returning the utility value of terminal nodes and assigns a utility value to parent nodes

Figure 1 shows a game tree for an arbitrary game. Each node represents a state in the game and
each line is a move to get to the next state. A triangle indicates a MAX node in which is in MAX’s
turn to move while a circle indicates that it is the MIN player’s turn. The numbers inside the
shapes represent the utility value of that node. MAX will always choose a move that has a higher
utility value while MIN prefers a lower value, as their names describe.

minimax-value (n) =
• utility (n) if n is a terminal state
• max action ∈ moves minimax-value(nextboard(action)) if n is a Max node
• min action ∈ moves minimax-value(nextboard(action)) if n is a Min node

Once the algorithm reaches a leaf node which indicates a terminal state, the utility value of the
node is returned.This value is then backed up through the tree and compared to other potential
moves’ utility values. Depending on which player’s turn it is, an internal node’s utility value
becomes either the minimum or maximum utility value of all the child nodes’ utility values.

Alpha-beta pruning is an additional technique that can be used in combination with the minimax
algorithm. This variant of the minimax algorithm should theoretically have the same statistical
chance of winning as the basic minimax algorithm but be much more computationally efficient
because it eliminates branches that cannot possibly influence the final decision. For example:
minimax-value (root) = max(min(3, 12, 8), min(2, x, y), min(14, 5, 2))
 = max(3, min(2, x, y), 2)
 = max(3, z, 2) where z ≤ 2
 = 3
In other words, even if we let z be the minimum of x and y, the minimax decision for the node root
is independent of the values of x and y so we can prune away these branches.

Figure 1 - Game tree for an arbitrary
game with the minimax values for each

node shown
Figure 2 - Python code for

minimax recursive algorithm

On an 8x8 game board, we evaluated a minimax agent and minimax with alpha-beta pruning
agent both at a fixed depth of 5 against:

• each other
• a human agent (me)
• an agent that selects a random move for the list of potential moves
• an agent that selects a move based on the following criteria/strategy:

- Avoid moving corner pieces
- Move a piece that is in danger of being jumped
- Avoid moving a piece that is not in danger of being jumped
- Make a move that puts the player in a position to make a future move

Then, we further compared the minimax agent and minimax with alpha-beta pruning
agent at various fixed depths.

Results

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Dr. Michael Scherger for his
guidance, patience, and constant support throughout the duration of this project. I would also like
to thank my thesis committee, Dr. Antonio Sanchez and Dr. Wendy Williams, for their
encouragement, insightful comments, and hard questions as well as the rest of the Department of
Computer Science for their support throughout my years in the Computer Science program.

References

• Stuart Russell and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall Press, Upper Saddle River,
NJ, USA.

• Joel H. Gyllenskog. 1976. Konane as a vehicle for teaching AI. SIGART Bull. 56 (February 1976), 5-6.
• David Poole, Alan Mackworth, and Randy Goebel. 1997. Computational Intelligence: A Logical Approach. Oxford University Press,

Oxford, UK.

To
ta

l N
um

be
r N

od
es

 E
xp

lo
re

d

100

10000

1000000

Depth of Search Tree
2 4 6

Minimax Agent Alpha-beta Agent
Tree Depth: 2 4 6 2 4 6

Total Number of
Nodes Explored: 178 50,093 4,245,710 189 11,585 202,735

Average Time to
Make a Move: 0.00790 2.6839 140.72 0.00645 0.43078 6.3444

Av
er

ag
e

Ti
m

e
to

 M
ak

e
a

M
ov

e
(in

 s
ec

on
ds

)

40

80

120

160

Depth of Search Tree
2 4 6Minimax

Alpha Beta

MAX

8 10 2 5 8 9 4 11 6

76-3481328

8 13 6 7

8 6

8

MIN

MAX

