
Abstract
Although multiple localized chemostratigraphic and strength studies have been completed on the 
organic-rich Barnett Shale in the Fort Worth basin (Montgomery et al., 2005; Pollastro et al., 2007; 
Jarvie et al., 2007; Rowe et al., 2008; Williams et al., 2016; Taylor, 2017; Alsleben, unpublished), 
basin-wide correlations have not been completed. Basin-wide correlation of chemostratigraphy and 
mechanical stratigraphy could enhance the understanding of regional variations in chemical 
composition and rock competence. Therefore, the proposed study is going to test multiple 
hypotheses to identify regional trends and correlations within the Barnett Shale, based on 
variations in the formations chemical makeup and rock strength. Using the data from a total of nine 
cored Barnett intervals, several correlative chemofacies can be identified across the basin and 
grouped into zones. These zones show strong relationships between %Ca, %Si, % Clay (K, Al, Ti), 
and unconfined compressive strength.

Methods
ED-XRF Analyses
• Elemental composition of samples were collected by Bruker Tracer IV 

(Fig. 4).
• ED-XRF can transmit and receive high-energy X-ray beams.

• Emitted X-ray force an electron to be expelled from the lower-energy inner 
shell (K shell), resulting in electrons from the higher-energy outer shells 
replacing the expelled electron and releasing energy in the form of 
emission X-rays (Fig. 5).

• Major element analysis will consist of a run time interval of sixty seconds 
with a 15kV calibration and trace element analysis will consist of a run 
time interval of ninety seconds with a 40kV calibration. 

• Data is converted to weight% and parts per million (ppm).

• Heirarchical Cluster Analysis using the Ward (1963) method is performed 
on data from all nine cores to determine chemofacies.

Micro-mechanical Analyses
• The Bambino (Fig.6) is a micro-rebound hammer used to measure  

Leeb’s hardness number for each rock sample by measuring velocity at 
impact compared to rebound velocity (Fig. 7).

• An empirical equation from Zahm and Enderlin (2010) was used to 
convert Leeb Hardness into UCS.

• The Dimpler (Fig. 8) is a point-load 
penetrometer developed after Ramos et al. (2008).

• The impression (Fig. 9) left on the rocks surface can be measured and 
the geometric properties can be converted to UCS using an empirical 
equation from Ramos et al. (2008).

Introduction
• Attempt to establish basin wide correlation between chemostratigraphic and mechanical 

stratigraphy components within the Barnett Shale (Fig. 1).

• Fort Worth Basin was a marine foreland basin created during the convergence of Laurentia 
and Gondwana (Fig. 2).

• Energy dispersive x-ray fluorescence (ED-XRF) and unconfined compressive strength (UCS) 
data collected at 3 inch intervals on a well from Archer county (Fig. 3).

• Data collected will be correlated to 8 other wells with similar data (Fig. 3).
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Conclusions
• In the Barnett Shale, clay content appears to 

have the largest effect on rock strength. The 
strongest rock being found in the northern 
part of the basin and the weakest rock being 
found in the southern part of the basin.

• 4 distinct chemofacies were identified across 
the basin using a hierarchal cluster analysis 
and then visually grouped into 3 unique 
zonations.

• Zonations suggest changes in sediment input 
in relation to location within the basin, with 
more calcareous input in the northern part of 
the basin, and more siliceous input in the 
southern part of the basin.

Figure 3. Map of Fort Worth Basin showing locations of faults, thrust front, 
and cores used in this study (Modified from Hornbach et al., 2016)

Figure 4. Image depicting the equipment used for ED-XRF analysis.
Figure 5. Generalized diagram showing how X-ray beams 
(incident radiation) from the XRF tool interact with electrons in 
an atom.

Figure 12. Ternary diagrams showing trends in minerals 
composition and chemofacies amongst all nine wells.

Figure 13. Cross-section of all nine wells showing four chemofacies and three distinct zonations. 
Wells are placed beside each other for easier correlation and are not plotted in relation to Total Vertical 
Depth (TVD).

Figure 10. Crossplot of Equotip Bambino UCS vs %Ca in all 
nine wells.

Figure 2. Regional paleogeography of the southern mid-continent region during he late Mississippian (325 Ma) 
showing the approximate location of the Fort Worth Basin outlined in black. (Modified from Blakey, 2005)

Figure 1. Stratigraphic column showing the general subsurface 
geology found in Fort Worth Basin

Figure 6. Image of Equotip Bambino micro-rebound hammer.

Figure 7. Schematic of Equotip Bambino. Modified from Aoki 
and Matsuura (2008)

Figure 8. Image depicting the Dimpler tool in use.

Figure 9. Illustration of 
point load and wedge 
shaped indenter
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Figure 11. Crossplot of Equotip Bambino UCS vs %Clay 
(Al+Ti+K) in all nine wells.

Figure 14. Table Showing the average %wt for each major element in relation to the chemofacies 
identified by a hierarchal cluster analysis.

Figure 14. Table Showing the average %wt for each trace element in relation to the chemofacies identified by a hierarchal cluster analysis.
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Discussion
Results from strength and elemental testing show
a strong positive linear relationship between %Ca 
and UCS (Fig. 10), as well as a strong negative 
linear relationship between %Clay (Al+Ti+K) and 
UCS (Fig. 11). Trends in minerals composition plot 
very closely between all nine wells and plot below 
the Wedepohl (1971) “Average Shale” (Fig. 12). 
Four distinct chemofaces were identified across 
all nine wells (Fig. 14)(Fig.15). Facies 2 is 
considered a quasi-facies as it is made up of the 
well sections were there was corrupt data or no 
data. Facies 1 and 5 are found mostly in the 
northern part of the basin and represent the most 
calcareous facies, suggesting sediment input from 
the Chappel Shelf. Facies 3 and 4 are found 
mostly in the southern part of the basin and 
represent the most silica and clay rich facies, 
suggesting sediment input from the Caballos-
Arkansas Island Chain. Facies 4 trace elements 
(Mo, Ni,V, Cu, Zn, Co) suggest this facies was 
associated with the most authigenic enrichment 
under anoxic conditions (Tribovillard et al., 2006). 
Three zonations were identified by abundances of 
chemofacies in distinct sections of each well (Fig 
13). Zone 1 being composed of mostly facies 3, 
zone 2 being composed of highly intertwined 
facies 3 and 4, and zone 3 composed of mostly 
Facies 4.
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