

Energetics of Dissolved Organic Matter at the SiO₂ – Water Interface

Faculty Advisor Omar R. Harvey (PhD) School of Geology, Energy and the Environment, Texas Christian University, Fort Worth, TX, USA

Introduction

- Silica oxides (SiO₂) come in a variety of forms including silica gel, quartz, opal, diatoms, and phytoliths.
- ***** Binding of organic chemicals to silica oxides is important for several industries.
 - **Cryanic catalysts supports bindings of films onto** glass
 - ***** Environmental impacts with contaminant movement and climate change
- ***** This study will focus on the binding and debinding energetics of sodium benzoate and sodium butyrate on silica gel.

Kristin DeBone

 Q^2

SION

reaction.

 о он	Substituted benzoic acids	R ₂	R ₃	R4	R ₅
R ₅ R ₄	Salicylic acid <i>p</i> -Hydroxybenzoic acid Protocatechuic acid Gallic acid Vanillic acid Syringic acid	OH H H H H	H H OH OCH ₃ OCH ₃	H OH OH OH OH	H H OH H OCH ₃
Provide the second seco	Substituted cinnamic acids <i>p</i> -Coumaric acid Ferulic acid Sinapic acid		R ₃ H OCH ₃ OCH ₃	R4 OH OH OH	R5 H H OCH3