Insights into the Sources and Tectonic Setting of Magmatism in a Complex Arc Setting: Major and Trace Element Variations in the ~1.2 Ga **Barby Formation in SW Namibia**

ABSTRACT

The ~1.2 billion-year-old-Barby Formation is located in SW Namibia and has been argued to represent a continental volcanic arc. Previous studies on these rocks primarily relied on mobile-element data, which can be altered by secondary processes and therefore is unreliable for constraining petrologic processes. In an effort to establish the Barby Formation's petrotectonic history, 20 samples were analyzed using XRF and ICP-MS to determine whole-rock major and trace element concentrations. These data were used to answer two questions: (1) Do the samples represent one unique magma series that came from a single source? (2) If the Barby Formation is indeed a volcanic arc, did it form from normal, flat-slab, or oblique subduction? These questions were answered using a combination of geostatisical analyses (distribution, cluster, and outlier analyses), trace-element tectonic discrimination diagrams, and geospatial analyses), trace-element tectonic discrimination diagrams, and geospatial analyses (see other poster by Lehman et al.). arc setting, with rock samples displaying steeply dipping, light-rare-earth-element data indicate at least two magma series from two distinct mantle sources. These two groups are controlled by enrichment differences and variations in the high-field-strength element ratios. The presence of shoshonitic rocks is consistent with flat-slab or oblique subduction.

KONKIEP TERRANE

Located in south-west Namibia, the Konkiep Terrane has played an important role in reconstructing the formation of the Namaqua-Natal Orogenic Belt (NNOB) (Figure 1). The NNOB represents the ancient southern continental margin of the Kalahari Craton (e.g., Jacobs et al., 1993, 2008; Dalziel et al., 2000; Eglington and Armstrong, 2003). During the Mesoproterozoic, the NNOB acted as a major convergent margin, which underwent arc volcanism, arc/microcontinent collision, continent-continent collision and intraplate magmatism (e.g., Hanson et al., 2006; Miller, 2012; Cornell et al., 2015). This extensive orogenic belt formed during the large-scale accretionary event which ended in the formation of the supercontinent Rodinia at ~1 Ga, (e.g., Hanson, 2003; Becker

et al., 2006; Jacobs et al., 2008). The Konkiep Terrane may represent the oldest relatively unmetamorphosed Mesoproterozoic crust within the NNOB (Miller, 2008). The Konkiep Terrane is composed of amphibolitic basement termed the Gorrasis group (informal term), which is unconformably overlain by the relatively undeformed Konkiep Group comprises six volcanic formations with associated intrusive units, and two sedimentary formations (Miller, 2008) (Figure 2). Table 1, modified from Miller (2008), summarizes the lithology of the sedimentary and volcanic rocks. The Konkiep Group has undergone very low-grade metamorphism (zeolite and prehnite-pumpellyite facies) with depositional features, volcanic textures, and some primary mineralogy preserved (Miller, 2012). This lack of deformation, combined with the early time of accretion of at least part of the Konkiep Terrane (>1.33 Ga) and active magmatism until 1.1 Ga, provides a window into the tectonic and magmatic changes that occurred in this part of the NNOB (Panzik et al., 2015; Cornell et al., 2015).

BACKGROUND

the region. Note the Sinclair Supergroup and Konkiep Terrane is highlighted in green and considered to be a part of the NNOB. Map modified from Hanson (2003) and Panzik et al. (2000

Table 1 (below): Lithological descriptions of the volcanic and sedimentary rock formations that make up the Konkiep Group. Ages and maximum thickness of each unit are noted. Table modified from Miller (2008). Colors correspond to Figure 2.

Konkiep Group			
Formation	Lithology	Maximum Thickness (m)	Age (Ma)
Aubures (Miller, 2008)	Dark rust red shales, rust red lithic to arkosic sandstones, polymictic conglomerates, Basal polymictic conglomerate	2590	1108 ± 9 (Kasbohm et al, 2016)
Guperas	Quartz porphyry lava, block and ash flows Basic lava polymictic conglomerate, lithic sandstone	1000	
	Green shale Brown to grey polymictic conglomerate, purple-red lithic sandstone, quartzite	3700	
	Aruab Mountain: Cross-bedded orthoquartzite, feldspathic quartzite	400	
	Voicaniciastic and lithic sandstone, congiomerate Pyroxene trachyandesite lavas and tuffs;	400	
	Provente trachyddsait lavas,	3000	1214 ±
Barby (von Brunn,	l arge-feldspar trachyandesite lavas:		5(Cornell et al., 2016) to 1217 ± 2 (Cornell et al.,
1969; Watters, 1974)	Small-feldspar trachyandesite lavas,		
	l atite	2000	unpublished)
	Volcaniclastic sandstone	1550	
	Rhyolitic pyroclastic rocks	80	
Haiber Flats (Hoal, 1990)	Porphyritic rhyolite and ignimbrite, minor rhyodacite, interbedded volcaniclastic sandstone	120	
	Phyric and amygdaloidal basaltic andesite and andesite, occasionally pyroclastic, tuff, rhyolite and volcaniclastic sediment		
Kunjas	Lithic sandstone, polymict conglomerate;		1304 ± 1 (Cornell et al., unpublished data)- youngest detrital zircon grains
	Shale, minor rhyolitic and mafic volcanic layers, iron formation;		
	Basal conglomerate overlain by lithic sandstone (Watters, 1974)	300	
	Shale Pebbly lithic and arkosic sandstone, minor polymict conglomerate	1200	
	siltstone, minor sandy limestone, red chert	100	
	Basal polymict conglomerate overlain by lithic sandstone, subarkose (Hoal, 1990)	800	
Welverdiend	Tholeiitic basalts, agglomerates, rhyolites and associated tuff, volcaniclastic and clastic sedimentary rocks		1327 ± 10 (Cornell et al., 2015)
Nagatis (von Brunn, 1967)	Pyroclastic quartz porphyry, ignimbrite layers at base, interbedded basic lava in middle of unit	1000	1363 ± 11 (Cornell et al., 2016)
	Polymict conglomerate, volcaniclastic grit and lithic sandstone, arkose, shale		
	Mafic lava, altered mafic lava		
	Block and Ash Felsic lavas, ignimbrite	1000	
Kairab	Porphyritic mafic and felsic metavolcanic rocks	4000	1369 ± 10 (Cornell et al.,
(Hoal, 1990)	minor volcaniclastic metasediment		2016)
Gorrasis (Miller, 2008)	Basement		(Cornell et al., 2016)

BARBY FORMATION

The ~1.2 Ga Barby Formation has been the most researched formation of the Konkiep Group and is, arguably, the most complex volcanic unit within the group. The calc-alkaline to shoshonitic formation is preserved in extensional basins and is estimated to be <8500 m thick (Miller, 2008). Syndepositional faults, which indicate a lateral movement component, cut the formation (Watters, 1974; Brown and Wilson, 1986). Large feldspar-phyric intermediate lavas are characteristic of the Barby Formation and have been termed trachyandesites by previous researchers. Based on the high K₂O, high Zr, lack of iron enrichment, depletion in TiO₂ and Nb, and enrichment in light rare earth elements (LREE), the Barby Formation has been argued to consist of calc-alkaline to shoshonitic volcanic rocks that formed in a continental arc setting (Watters, 1974, 1977; Hoal, 1990, 1993; Brown and Wilson, 1996; Miller, 2008, 2012) (Figure 4). The presence of shoshonitic compositions could suggest that the Barby Formation formed in unusual arc settings, possibly related to oblique or flat-slab subduction (e.g., Becker et al., 2006; Kay and Mpdozis, 2002).

Previous studies heavily relied on mobile element data to makes these petrotectonic arguments (Watters, 1974; Brown and Wilson, 1986). The mobile element concentrations are likely to have been altered by secondary processes, making these data unreliable for constraining petrologic processes. This study utilizes major element and trace element data, particularly focusing on immobile element ratios from 25 samples collected in the 2016 field season. These samples were collected from the three main facies: (1) Hawaiian, Strombolian, and phreatomagmatic deposits; (2) lava flows; and (3) sil packages containing two to six lithologically distinct sills intruded into lacustrine deposits (Andrews et al., 2016, 2017; Lehman et al., 2016). Sample locations are shown in Figure 2.

Katelyn M. Lehman, Dr. Richard Hanson, Professor Tamie Morgan, Virginia Andrews, John Williams, Dave Baylor Student Research Symposium April 2018, Texas Christian University, Fort Worth, TX

OUTH AFRICA agua-Natal Oro

KEY QUESTIONS

1) Do the samples represent one unique magma series that came from a single source? 2) If the Barby Formation is indeed a volcanic arc, did it form from normal, flat-slab, or oblique subduction? Is there evidence of backarc-volcanism?

Samples were collected from Namibia during the Summer 2016. The samples were analyzed using ICP-MS and XRF at Washington State University. This geochemical data was analyzed using a three stage process, which included a number of sub-steps shown in the flow chart to the right.

RESULTS

- All samples are high-K calc-alkaline andesites to basaltic andesites, or shoshonitic andesites to basaltic andesites. All samples plot as forming in an arc setting (Figure 4).
- groups, with 2 outliers. Both outliers (MS1.1 and VA16118) have high La/Yb ratios, MS1.1 is adakitic in composition (La/Yb ratio>20, high Sr/Y, low Y).
- Each of these ratios have a p value < 0.0001, showing that the null hypothesis (that there are no clusters) can be rejected.

Group 1	Group 2	Figure(s
More Enriched in REE, LREE enriched = thicker crust, greater subduction component (i.e. shallower subduction component) (White, 2013)	Enriched in LREE, REE = formed in an arc setting	Figure 5
Depletion in Nb-Ta relative to chondrites or primitive mantle, Nb/Ta fractionated = volcanic arc (White, 2013)	Depletion in Nb-Ta relative to NMORB normalized immobile ellements, sub- and suprachondritic Nb/Ta ratios chondrites or primitive mantle, Nb-Ta fractionated = island arc, back-arc, melts formed above slab tears, less residual amphibole/rutile (eg., Pearce and Norry, 1979; Prouteau et al., 2000; Aulbach et al., 2008; Huang et al., 2012)	Figure 6
Predominantly in the south portion of the field area	Predominantly in the north central portion of the field site	Figure 7
Plots as Shoshonitic Continental Arc or Continental Crust	Plots between Island Arc and Continental Arc Fields; High K to Shoshonitic	Figure 10-1
Often plots on or near continental crust and sediment fields = more assimilated crust or incomporation of subducted eroded material, compressional/ shallower subduction	Plots between island arc and continental crust/sediment fields = incorporation of different amount of subducted material, crust thickness differences	Figure 10-1
Interpretations	Interpretations	
Volcanic arc volcanism during compressional subduction producing thickened crust or more subducted eroded material to be incorporated into the melt	Arc volcanism that has a greater mantle contribution. Represents either back-arc volcanism, rifts formed during oblique subduction, or slab steepening leading to wet-spot melting	
Geospatial Trends	^{16°30'} ^{16°36'} Nb/Ta ○ ≤13.59	15°12'
NIM_SE Trends No Ge	ocnatial ≤19.35 ≤15.75 ≤18.35 ≤19.96	XVIII
Nb/Ta increase to Relation	onship	Desing p
the NW • Hi	gh La/Yb =	pleted South and
• Zr/Nb and V/Ti res	sidual garnet in	" Jurce Ource
generally so		USDA, USGS, AeroGRID, IGN, and the GIS User Comm 16 ⁹ 45°42'
decrease to the • High	gh Ta/Yb =	В
NW co		
Group Trends as	similation/	
 Group 1 is in the S Group 2 is in the N 		Stent or D
• 2 samples from $\sqrt[3]{2}$	25-42,	o Coletion
each group do not	 Estimation of the second second	ISDA, USGS, AsroGND, 1914, and the GIS User Comm
follow these trends	67 → 16°36° 16°30° 16°36° 16°30° 16°36° 16°36°	16°42' 16°42'
16°30' 16°36' 16°42' by La/Yb • ≤8.43		C
 ≤10.63 ≤12.49 <15.22 	€	
Source: 2:1.50 Bb557 Bb577 Bb577 Source: 2:1.50 Bb577 Source: 2:1.50 Source: 2:1.50 S	alobe, GeoBye, Bantustar Geographics, CNSS/Atibles ISGS, Aero GND, IGN, and the GIS User commonity.	laani.
	ve) Geochemical Group	
Source: Earl, Digital Globe, Geographice, CNES/Airbus DS, USDA, USGS, AsroGRID, IGN, and the GIS User Community Group 2 in the	ote the dominance of oten and Group 1 in	3DA, USES, AwrockPiD, 16N, and the ElS User Commu
16°30' 16°36' 16°42' the South. 16°30' 16°36' 16°42' the South. Ta/Yb Samples. wh	There are 4 of the 25	15.4 Kilometers
• ≤0.113 <0.158 0 0 0 trend. Figure 9	9: (left) (A) La/Yb ratio Figure 8: (above) N-S trend	lina element rat

Norry, 1979)

0 3.85 7.7 15.4 Kilometers

' iyure 0. (above) in-0 trenuling elennent re spatial relationships. Note th differences. A. Nb/Ta is an effective indicator of dispersed nature indicating source enrichment and mantle source differences in the amount of etasomatism (Pearce & Stern, 2006). B. Zr residual garnet in the source decreases in the transition from arc to back-arc White, 2013). (B) Ta/Yb ratios a and also decreases due to less depletion in the used to determine mantle source (e.g., Weyer et al., 2003; Pearce & Sterr enrichment and/or oceanic of 2006) C. V/Ti are controlled, in part, by oxyger continental arc setting (Pearce & fugacity (Mallmann and O'neill, 2009). V/Ti decreases from arc to back-arc (Figure 4).

K-means and median cluster analysis based on High Field Strength Element ratios (HFSE) and Rare Earth Element (REE) ratios support 2

Principal component analysis revealed that the clusters primarily result from the Ti/(Hf*Sm), Zr/Hf, Nb/Ta, Zr/Y, and Nd/Hf ratios distributions.

Figure 6: Immobile element spider diagram for Group 1 and Group 2 samples normalized to N-MORB from Sun and McDonough (1979). The two samples, which are anomalousMS1.1 and VA16118 are included into Group 1. Note the HFSE differences between each group. Zr is decoupled from Hf in the Group 1 samples Group 1 and 2 also have different Nb/Ta relationships. Although samples here are plotted normalized using NMORB, it is important to note Nb/Ta_N are subchondritic in Group 1 samples, and suprachondritic in Group 2 samples

DIFFERENT MANTLE SOURCES?..... Potentially

- groups (Group 1 and Group 2).
- evidence of backarc-volcanism?
- (e.g., Best, 2003).

- the arc.

Conclusions

The Barby Formation formed above an unusual subduction geometry. The northern samples formed in a setting with thinner lithosphere. This could have been due to rifts formed from oblique subduction, or because this area was in a back-arc setting relative to the southern samples.

Future Work

- Distinguish key residual source minerals Determine fractionation, assimilation, and
- Select samples with the most primitive
- 261162

n major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts: Contributions to Mineralogy and Petrology, v. 144, p. 241-

Geology, Energy & the Environment

TCU COLLEGE OF SCIENCE & ENGINEERING

DIFFERENT PETROGENETIC HISTORIES?..... Definitely

1) Do the samples represent one unique magma series that came from a single source? • The variations in V/Ti, Zr/Nb, La/Yb, Nb/Ta, Zr/Sm, Ta/Yb, and Th/Yb cannot simply be explained by an evolving magma (i.e. fractional crystallization, partial melting, assimilation, etc.). There are at least two distinct petrogenetic

• Group 1 must be coming from a source that has more subduction input and/or crustal assimilation as it plots typically in the continental volcanic arc/continental crust field (Figure 10, 11). Group 1 is LREE enriched (Figure 5), more depleted (Figure 8B), has typical Nb/Ta subchondritic values (Figure 6), and has high oxygen fugacity (Figure 8C), which is all characteristic of a typical arc setting (e.g., Pearce & Stern, 2006; White, 2013). Group 1 does plot in both the Shoshonitic oceanic arc and continental arc field in Figure 12. This must be explored in more detail. Group 2 plots in both island arc fields and continental arc fields, has suprachondritic Nb/Ta values (Figures 6 and 8A), is LREE enriched (Figure 5), has indicator of higher degrees of carbonated metasomatism in the source (Figures 12 and 12), formed in an environment with lower oxygen fugacity (Figure 8C), less subduction input (Figure 5), but likely has lithospheric input based on high Ta/Yb (Figure 12), high Nb/Ta, high La/Yb, and since it plots in the PAP field (Figure 13) in some samples. The conditions which led to the formation of Group 2, must be explored in more detail. 2) If the Barby Formation is indeed a volcanic arc, did it form from normal, flat-slab, or oblique subduction? Is there

• The Barby Formation is a volcanic arc based on the LREE enrichment, Nb/Ta ratios and calc-alkaline compositions

• Arc shoshonites form in unusual subduction geometries, either flat-slab or oblique subduction and usually form after a major tectonic change (slab steepening, slab-breakoff, or ridge subduction) (Müller, 2002). The dominance of shoshonitic compositions in both groups indicate that the Barby Formation must have had one of these geometries. Both flat-slab and oblique subduction can lead to increased thickening of the crust, which explains the high La/Yb values in some of the samples (e.g., Kay and Mpdozsis, 2002). In a typical arc to back-arc setting La/Yb would decrease towards the back-arc. The geospatial distribution of the La/Yb values paired with the N-S trends in Nb/Ta, V/Ti, and Zr/Nb, would support different amount of lithosphere from subduction erosion being incorporated into the melts or melts from a slab window created during ridge subduction. Ta/Yb, which also can be used as indicator for lithosphere incorporation, also shows a similar geospatial distribution-further supporting this argument. Based on the evidence that the Northern samples were emplaced in thinner lithosphere and had less of a subduction component, but showed evidence of carbonatitic metasomatism the Northern samples could represent a flat-slab back-arc setting, that formed when the slab steepened. In turn, the Southern samples represent the main portion of

• The Northern and Southern samples may simply represent flat-slab/oblique subduction volcanic arcs formed in different time periods and the Northern sample formed above a less depleted source.

mixing from immobile trace element diagrams compositions that represent each magma

- 4. Model the evolution of each magma series using melts. 5. Based on petrology determine likely magma/mantle source conditions (i.e. fugacity, mantle enrichment, amount of assimilated crust)
- 6. Use Sm-Nd and Lu-Hf isotope systems to clarify source differences and the potential for lithospheric/subducted-eroded material in the mantle source

References