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ABSTRACT DIFFERENT MANTLE SOURCES?..... Potentiall

The ~1.2 billion-year-old-Barby Formation is located in SW Namibia and has been argued to represent a continental volcanic arc. Previous studies on these rocks primarily relied on mobile-element data, which can be altered by secondary processes and therefore is NT PETROGENETIC HISTORIES?..... Definitel
unreliable for constraining petrologic processes. In an effort to establish the Barby Formation's petrotectonic history, 20 samples were analyzed using XRF and ICP-MS to determine whole-rock major and trace element concentrations. These data were used to answer
two questions: (1) Do the samples represent one unigue magma series that came from a single source? (2) If the Barby Formation is indeed a volcanic arc, did it form from normal, flat-slab, or oblique subduction? These questions were answered using a combination of
geostatisical analyses (distribution, cluster, and outlier analyses), trace-element tectonic discrimination diagrams, and geospatial analyses (see other poster by Lehman et al.). This study supports previous interpretations that the Barby Formation formed in a continental
arc setting, with rock samples displaying steeply dipping, light-rare-earth-element enriched patterns, negative Nb/Ta anomalies, and calc-alkaline andesitic to shoshonitic compositions. Major and trace element data indicate at least two magma series from two distinct
mantle sources. These two groups are controlled by enrichment differences and variations in the high-field-strength element ratios. The presence of shoshonitic rocks is consistent with flat-slab or oblique subduction.

1) Do the samples represent one unique magma series that came from a single source?

« The variations in V/Ti, Zr/Nb, La/Yb, Nb/Ta, Zr/Sm, Ta/Yb, and Th/Yb cannot simply be explained by an evolving
magma (i.e. fractional crystallization, partial melting, assimilation, etc.). There are at least two distinct petrogenetic
groups (Group 1 and Group 2).

« Group 1 must be coming from a source that has more subduction input and/or crustal assimilation as it plots typically
in the continental volcanic arc/continental crust field (Figure 10, 11). Group 1 is LREE enriched (Figure 5), more
depleted (Figure 8B), has typical Nb/Ta subchondritic values (Figure 6), and has high oxygen fugacity (Figure 8C),
which is all characteristic of a typical arc setting (e.g., Pearce & Stern, 2006; White, 2013). Group 1 does plot in both
the Shoshonitic oceanic arc and continental arc field in Figure 12. This must be explored in more detail. Group 2
plots in both island arc fields and continental arc fields, has suprachondritic Nb/Ta values (Figures 6 and 8A), is
LREE enriched (Figure 5),has indicator of higher degrees of carbonated metasomatism in the source (Figures 12
and 12), formed in an environment with lower oxygen fugacity (Figure 8C), less subduction input (Figure 5), but likely
has lithospheric input based on high Ta/Yb (Figure 12), high Nb/Ta, high La/Yb, and since it plots in the PAP field
(Figure 13) in some samples. The conditions which led to the formation of Group 2, must be explored in more detalil.

2) If the Barby Formation is indeed a volcanic arc, did it form from normal, flat-slab, or oblique subduction? Is there

evidence of backarc-volcanism?

« The Barby Formation is a volcanic arc based on the LREE enrichment, Nb/Ta ratios and calc-alkaline compositions
(e.g., Best, 2003).

« Arc shoshonites form in unusual subduction geometries, either flat-slab or oblique subduction and usually form after
a major tectonic change (slab steepening, slab-breakoft, or ridge subduction) (Muller, 2002). The dominance of
shoshonitic compositions in both groups indicate that the Barby Formation must have had one of these geometries.

« Both flat-slab and oblique subduction can lead to increased thickening of the crust, which explains the high La/Yb
values in some of the samples (e.g., Kay and Mpdozsis, 2002). In a typical arc to back-arc setting La/Yb would
decrease towards the back-arc. The geospatial distribution of the La/Yb values paired with the N-S trends in Nb/Ta,
V/Ti, and Zr/Nb, would support different amount of lithosphere from subduction erosion being incorporated into the
melts or melts from a slab window created during ridge subduction. Ta/Yb, which also can be used as indicator for
lithosphere incorporation, also shows a similar geospatial distribution- further supporting this argument.

« Based on the evidence that the Northern samples were emplaced in thinner lithosphere and had less of a subduction

component, but showed evidence of carbonatitic metasomatism the Northern samples could represent a flat-slab

back-arc setting, that formed when the slab steepened. In turn, the Southern samples represent the main portion of
the arc.
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Conclusions

The Barby Formation formed above an unusual subduction geometry. The northern samples formed in a setting
with thinner lithosphere. This could have been due to rifts formed from oblique subduction, or because this area
was in a back-arc setting relative to the southern samples.
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The ~1.2 Ga Barby Formation has been the most researched formation of the Konkiep Group and is, arguably, the most
complex volcanic unit within the group. The calc-alkaline to shoshonitic formation is preserved in extensional basins and is
estimated to be <8500 m thick (Miller, 2008). Syndepositional faults, which indicate a lateral movement component, cut the
formation (Watters, 1974; Brown and Wilson, 1986). Large feldspar-phyric intermediate lavas are characteristic of the Barby
Formation and have been termed trachyandesites by previous researchers. Based on the high KO, high Zr, lack of iron
enrichment, depletion in TiO2 and Nb, and enrichment in light rare earth elements (LREE), the Barby Formation has been
argued to consist of calc-alkaline to shoshonitic volcanic rocks that formed in a continental arc setting (Watters, 1974, 1977,
Hoal, 1990, 1993; Brown and Wilson, 1996; Miller, 2008, 2012) (Figure 4). The presence of shoshonitic compositions could
suggest that the Barby Formation formed in unusual arc settings, possibly related to oblique or flat-slab subduction (e.g.,
Becker et al., 2006; Kay and Mpdozis, 2002).

Previous studies heavily relied on mobile element data to makes these petrotectonic arguments (Watters, 1974; Brown
and Wilson, 1986). The mobile element concentrations are likely to have been altered by secondary processes, making
these data unreliable for constraining petrologic processes. This study utilizes major element and trace element data,
particularly focusing on immobile element ratios from 25 samples collected in the 2016 field season.These samples were
collected from the three main facies: (1) Hawaiian, Strombolian, and phreatomagmatic deposits; (2) lava flows; and (3) sill
packages containing two to six lithologically distinct sills intruded into lacustrine deposits (Andrews et al., 2016, 2017,
Lehman et al., 2016). Sample locations are shown in Figure 2.

Future Work

Distinguish key residual source minerals 4. Model the evolution of each magma series using melts.

Determine fractionation, assimilation, and 5. Based on petrology determine likely magma/mantle source

mixing from immobile trace element diagrams conditions (i.e. fugacity, mantle enrichment, amount of assimilated

Select samples with the most primitive crust)

compositions that represent each magma . Use Sm-Nd and Lu-Hf isotope systems to clarify source differences

series. and the potential for lithospheric/subducted-eroded material in the
mantle source
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