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The ~1.2 billion-year-old-Barby Formation located in SW Namibia has been argued to represent a continental volcanic arc. Recent research by our group (see other poster by Lehman et al.) has supported these arguments with data exhibiting steeply dipping, light-rare-
earth-element enriched patterns, negative Nb/Ta anomalies, and calc-alkaline andesitic to shoshonitic compositions. The shoshonitic rocks are particularly interesting as these compositions often form in unusual arc settings (i.e., flat-slab subduction, oblique subduction,
ridge subduction). Pearce et al. (2005) showed that the relative plate depth, and in turn, subduction angle and orientation can be interpreted by mapping diagnostic trace element ratios. The spatial distribution of the geochemical ratios could potentially also differentiate
between shoshonitic volcanic rocks formed as a result of unusual plate geometries as opposed to a slab tear. If the map displays a tight cluster of shoshonitic composition rocks, the samples more likely formed above a slab tear, while a dispersed arrangement would
be more suggestive of either a flat-slab or oblique subduction origin. ArcGis Pro was used to map and analyze XRF and ICP-MS data from 20 samples of the Barby Formation. The samples are from lava flows or sills and range from calc-alkaline to shoshonitic in
composition. Both spatial tools and statistical analysis tools were used in an effort to explore potential geospatial relationships of key trace element ratios and previously established geochemical clusters. These results were then employed to attempt to recreate the
subduction conditions that formed this volcanic arc.
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KONKIEP TERRANE Can we use geospatial analysis to reconstruct ancient volcanic arcs?

Located in south-west Namibia, the Konkiep Terrane has played an important role in reconstructing the formation of the b o el iy o Pﬁoio-Sz;tion
Namaqua-Natal Orogenic Belt (NNOB) (Figure 1). The NNOB represents the ancient southern continental margin of the Subduction Zone Geochemical Trends : o B el e !

Kalahari Craton (e.g., Jacobs et al., 1993, 2008; Dalziel et al., 2000; Eglington and Armstrong, 2003). During the -
Mesoproterozoic, the NNOB acted as a major convergent margin, which underwent arc volcanism, arc/microcontinent
collision, continent-continent collision and intraplate magmatism (e.g., Hanson et al., 2006; Miller, 2012; Cornell et al.,
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Continental Volcanic Arc Back-arc Volcanism

2015). This extensive orogenic belt formed during the large-scale accretionary event which ended in the formation of the Arc Volcanism \ \4

supercontinent Rodinia at ~1 Ga, (e.g., Hanson, 2003; Becker et al., 2006; Jacobs et al., 2008).
The Konkiep Terrane may represent the oldest relatively unmetamorphosed Mesoproterozoic crust within the NNOB
(Miller, 2008). The Konkiep Terrane is composed of amphibolitic basement termed the Gorrasis group (informal term),

* As subducting slabs dehydrate, fluid-
mobile elements, the Large lon Lithophile
elements (LIL), metasomatize mantle
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WhICh.IS ungonformably overlain by thel relatively undefprmed !(onklep Group comprises Six volca.nllc formatlops with wedge, which is then partially melted. Accretionary Wedge |

associated intrusive units, and two sedimentary formations (Miller, 2008) (Figure 2). Table 1, modified from Miller (2008), High water content is associated with high Oceanic Crust ST ST LI Lt e Th iy —_—

summarizes the lithology of the sedimentary and volcanic rocks. The Konkiep Group has undergone very low-grade oxygen fugacity which can be quantified L ATt S T

metamorphism (zeolite and prehnite-pumpellyite facies) with depositional features, volcanic textures, and some primary in-part through the V/Ti ratio (e.g., Best, Figure 2: Simplified Map of Konkiep Terrane using Miller (2008) map and ArcGIS DigitalGlobe satellite
mineralogy preserved (Miller, 2012). This lack of deformation, combined with the early time of accretion of at least part of 2003; Mallmann and O’neill, 2009) B v ki data as an underlay. Unit colors are shown in both the key and Table 1. See Figure 1 for location
the Konkiep Terrane (>1.33 Ga) and active magmatism until 1.1 Ga, provides a window into the tectonic and magmatic . ’ ’ ' reference for the Konkiep Terrane. Field Site is outlined in black. Arrow points to possible generalized

The dehydrated fluids or hydrous melts
can metasomatize the overlying arc
lithosphere, which can fractionate Nb/Ta,

subduction direction assuming the northern samples are in the back-arc of the southern samples.

changes that occurred in this part of the NNOB (Panzik et al., 2015; Cornell et al., 2015).
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