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Background

e Many respiratory viral infections exhibit both uncomplicated
and severe clinical illness.

e Uncomplicated infections are localized near the top of the res-
piratory tract, while severe infections spread deeper into the
lower respiratory tract.

e We construct a continuous spatial model to study spread of
virus down the respiratory tract via mucous transfer speed, or
advection.
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e Across space, virus replicates by infecting healthy target cells.

e Model includes two transport mechanisms: diffusion and ad-
vection.

Results

We implemented the model using custom-written Python code.
Results shown below are snapshots of target cells, eclipse cells,
infectious cells, and virus in a one-dimensional respiratory tract.
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e We see that as advection increases, wave speed decreases.

e Sufficiently large advection values keep virus from traveling
down the respiratory tract.

e As advection increases, the peak viral load decreases.

e Similar results appear when decreasing the value for diffusion.

Analysis

The solution to the system is a wave which satisfies the conser-
vation equation:

atf(xat) - aaxf($’t) =0

This is used to express the system in terms of the moving coor-
dinate frame x = z,+ at. Then, we take laplace transforms over
the space domain and arrive at the convolution equation:
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The convolution integral is supported on the interval 0 < z < oo,
considering the domain of the laplace transform.

f(:v>*g(x)=/oxf(£)g(:v—£)df

And noting that functions of physical concentration are abso-
lutely differentiable, we may obtain an expression for V(z) in
terms of T'(x):

V=Cx)*T

e The steady wave solution of V' is expressed as a convolution of
T'(z) and a known function C(z)

e Expansion of terms in the convolution allows for simple nu-
merical waveform approximations

Conclusions

e Our model shows distinct behaviors as advection and diffusion
rates are changed, including infections isolated to the upper
respiratory tract and long-lasting severe infections.

e High advection prevents wave propagation, while lower advec-
tion can lead to deeper and stronger infections.

e Infants and the elderly are known to have lower advection
rates, perhaps explaining the higher incidence of lower respi-
ratory tract infections in these groups.

Future Directions

e Derive explicit solutions to the convolution equation.

e Look for necessary conditions on the wave speed and ampli-
tude.

e Examine parameter space portraits for diffusion and advection.




