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Background
• Many respiratory viral infections exhibit both uncomplicated
and severe clinical illness.

• Uncomplicated infections are localized near the top of the res-
piratory tract, while severe infections spread deeper into the
lower respiratory tract.

• We construct a continuous spatial model to study spread of
virus down the respiratory tract via mucous transfer speed, or
advection.

Viral replication

Mathematical model
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• Across space, virus replicates by infecting healthy target cells.

• Model includes two transport mechanisms: diffusion and ad-
vection.

Results

We implemented the model using custom-written Python code.
Results shown below are snapshots of target cells, eclipse cells,
infectious cells, and virus in a one-dimensional respiratory tract.

• We see that as advection increases, wave speed decreases.

• Sufficiently large advection values keep virus from traveling
down the respiratory tract.

• As advection increases, the peak viral load decreases.

• Similar results appear when decreasing the value for diffusion.

Analysis

The solution to the system is a wave which satisfies the conser-
vation equation:

∂tf(x, t)− α∂xf(x, t) = 0

This is used to express the system in terms of the moving coor-
dinate frame x = xo +αt. Then, we take laplace transforms over
the space domain and arrive at the convolution equation:
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The convolution integral is supported on the interval 0 ≤ x <∞,
considering the domain of the laplace transform.

f(x) ∗ g(x) =

∫ x

0

f (ξ) g (x− ξ) dξ

And noting that functions of physical concentration are abso-
lutely differentiable, we may obtain an expression for V (x) in
terms of T (x):

V = C(x) ∗ T

• The steady wave solution of V is expressed as a convolution of
T (x) and a known function C(x)

• Expansion of terms in the convolution allows for simple nu-
merical waveform approximations

Conclusions

• Our model shows distinct behaviors as advection and diffusion
rates are changed, including infections isolated to the upper
respiratory tract and long-lasting severe infections.

• High advection prevents wave propagation, while lower advec-
tion can lead to deeper and stronger infections.

• Infants and the elderly are known to have lower advection
rates, perhaps explaining the higher incidence of lower respi-
ratory tract infections in these groups.

Future Directions

• Derive explicit solutions to the convolution equation.

• Look for necessary conditions on the wave speed and ampli-
tude.

• Examine parameter space portraits for diffusion and advection.


