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Small Eigenvalues of Hyperbolic Polygons

The hyperbolic plane is a type of non-Euclidean geometry of the plane where a
different distance formula from the standard one is used.Hyperbolic geometry has a
profound impact on various distinct fields of mathematics and modern physics such as
the study of complex variables, geometric group theory, topology and theory of special
relativity. Using the finite element method as a numerical approximation in solving
for eigenvalues of the hyperbolic Laplacian, this research investigates the estimates of
the first two eigenvalues with Dirichlet and Neumann boundary conditions on bounded

domains in the upper half plane. These values can further be used to shed light on the
Selberg and Fundamental Gap conjectures.

Methods for estimating the first two eigenvalues

Given a polyhedron in H*, we have various boundary conditions for functions 1 defined on
the polyhedron:

1. Dirichlet boundary condition: ¢)(z) = 0 when z is on boundary.
0
on

2. Neumann boundary condition:

Y(z) = 0 when z € boundary. Here means the

on

outward normal derivative at points of the boundary.

3. Periodic boundary conditions on a polygon is equivalent to considering functions on
H* that satisfy a periodicity condition.

Given a hyperbolic triangle AABC with A = (v1.y1) = (0,¢€), B = (x2,y2) = (0,1), and
C' = (x0.y0). By changing the coordinates of C' (i.e. & and 1), and using Dirichlet boundary
condition, we can estimate the change in the first two eigenvalues and their difference.
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Spectral Theorem:If A is a symmetric operator on the finite dimensional vector
space V with complex inner product, then

First eigenvalue with respect

Second eigenvalue with respect to

Selberg Conjecture &

1. All eigenvalues of A are real to X and Yo Xo and Yo

2. A is diagonalizable, and

Fundamental Gap Conjecture

3. You can choose eigenvectors of A so that they form an orthonormal basis of V',

4. Eigenvectors corresponding to different eigenvalues are automatically orthogonal. fae =™ O 1. Sﬁlbﬁﬁﬂ( Conjecture: Consider the group .
A similar result is valid for symmetric elliptic differential operators like the Laplacian N h — [(N) = « (a b) |a-: be.d € Zoad —be = 1l,a=b=1b=c=0mod N §. T'(N) acts
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The Laplacian measures the curvature or stress of a function. It tells you how - J
much the value of the function differs from its average value taken over the surrounding A (X (N)) > -
points.More precisely, it is the divergence of the gradient. B
Laplacian = Af = -V -V} 2. Fundamental Gap Conjecture: Consider the Laplacian on a bounded convex domain ()
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with d being the diameter of the convex domain ().



