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Let’s Talk Science

e Molecular diagnostic techniques have revealed that approx-
imately 43% of the patients hospitalized with influenza-like
illness are infected by more than one viral pathogen at the
same time and have distinct disease outcomes compared to
single viral infections.

e [t is not clear how the two different viruses interact within
the respiratory tract of the infected person and modify dis-
ease severity.

e Mathematical models can be used to help us understand
the dynamics of such infections within the person.

e The aim of this research is to develop a kinetic model of
viral coinfection and use the model as a tool to help public
health researchers better understand the disease progres-
sion, outcomes and controls for the coinfected patients.

Coinfection model
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Our previous work with deterministic models of coinfection
shows that
e Viruses interact though resource competition.

e The virus with a higher growth rate consumes more target
cells and produces higher peak viral load.

e Duration of coinfection can be long enough (more than 14
days) if viruses are able to infect the same cells and have
access to renewable supply of cells.

e Using ODEs our models of viral coinfections reproduce the
average behavior of the disease.

e In reality, viral infections are discrete and stochastic.

Stochastic coinfection model

The transition probabilities for the corresponding CTMC
model are enlisted below.
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Objectives

e Stochastic simulations of single virus infections have shown
that there is an extinction probability that depends on the
size of the initial viral inoculum and parameters that de-
scribe virus-cell interactions.

e The coexistence of viruses predicted by the ODEs might
be difficult to observe in reality.

e In this work, we develop the stochastic counterpart of the
ODEs, a continuous-time Markov chain (CTMC) model in
order to analytically derive the extinction probabilities and
to determine which virus dominates the infection and dura-
tion of coinfection.

e We examine whether stochastic effects early in the infec-
tion can allow slower growing viruses to consume more tar-
get cells, contrary to the predictions of ODEs.

e Trajectories for the CTMC model are simulated using
Gillespie’s tau-leap algorithm.

Probability of stochastic extinction

The CTMC model approximated by multi-type branch-
ing process under appropriate conditions enabled to de-
rive the probability that the infection does not be-
come established which is known as extinction probability,
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e There is a non zero value for extinction probability that
depends on the parameters that describe the virus-cell in-

teractions.

e Probability of disease outbreak is (1 —&)=1 — z—7-.

Parameter values

Parameter Value Units
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Same growth rate

We set the initial conditions and transition rates for virus 1
and virus 2 equal to each other.

Two stochastic trajectories of viral load
curve:
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Time of peak viral load:
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Mean of time of peak virus 1: 2.09 days
Standard deviation: 0.45 days
Mean of time of peak virus 2: 2.06 days
Standard deviation: 0.47 days

Peak value of viral load:
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Mean of peak virus 1: 4.01 x 10° [V]
Standard deviation: 2.92 x 10° [V]
Mean of peak virus 2: 4.12 x 10° [V]
Standard deviation: 2.93 x 10° |V]

Peak of virus 1 appears 509 times over virus 2 from 1000
stochastic realizations.

Different growth rates

We vary the growth rate of the first virus by varying the
infection rate, (3.

No. of times Virus 1 and Virus 2 peak:
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e ODEs predict that if the growth rate of one virus is higher
than the other it will always have a higher peak viral load.

e If growth rates are similar, the virus with the higher growth
rate will not always have a higher peak viral load.

e Unlike the prediction of ODEs, now there is the possibility
that slower growing virus might dominate infection dynam-
ics.

Duration of coinfection

Coinfection duration is defined as the time during which both
infections are above the detection threshold.
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Mean of coinfection duration: 6.37 days
Standard deviation: 0.17 days
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e Viruses do not coexist for more than ~ 6 days.

e Virus with higher extinction coefficient dies earlier than the
other virus leading to competitive exclusion and opposing
the coexistence cases predicted by the deterministic model.

Conclusion

Stochasticity allows for a weaker virus to out-compete a
stronger virus, but only if the difference between the two
is not very big.

Future direction

Include associated generation of immune components in the
model.




