

# Modeling of Viral Coinfection in Human Respiratory Tract Using Stochastic Method

LUBNA PINKY, GILBERTO GONZÁLEZ-PARRA AND HANA M. DOBROVOLNY Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX

Propensity

# SciCom



- Molecular diagnostic techniques have revealed that approximately 43% of the patients hospitalized with influenza-like illness are infected by more than one viral pathogen at the same time and have distinct disease outcomes compared to single viral infections.
- It is not clear how the two different viruses interact within the respiratory tract of the infected person and modify disease severity.
- Mathematical models can be used to help us understand the dynamics of such infections within the person.
- The aim of this research is to develop a kinetic model of viral coinfection and use the model as a tool to help public health researchers better understand the disease progression, outcomes and controls for the coinfected patients.

## Coinfection model



Our previous work with deterministic models of coinfection shows that

- Viruses interact though resource competition.
- The virus with a higher growth rate consumes more target cells and produces higher peak viral load.
- Duration of coinfection can be long enough (more than 14 days) if viruses are able to infect the same cells and have access to renewable supply of cells.
- Using ODEs our models of viral coinfections reproduce the average behavior of the disease.
- In reality, viral infections are discrete and stochastic.

### **Objectives**

- Stochastic simulations of single virus infections have shown that there is an extinction probability that depends on the size of the initial viral inoculum and parameters that describe virus-cell interactions.
- The coexistence of viruses predicted by the ODEs might be difficult to observe in reality.
- In this work, we develop the stochastic counterpart of the ODEs, a continuous-time Markov chain (CTMC) model in order to analytically derive the extinction probabilities and to determine which virus dominates the infection and duration of coinfection.
- We examine whether stochastic effects early in the infection can allow slower growing viruses to consume more target cells, contrary to the predictions of ODEs.
- Trajectories for the CTMC model are simulated using Gillespie's tau-leap algorithm.

### Stochastic coinfection model

The transition probabilities for the corresponding CTMC model are enlisted below.

#### Transitions

| $T \to T - 1, E_1 \to E_1 + 1$     | $\beta_1 T V_1$ |
|------------------------------------|-----------------|
| $T \to T - 1, E_2 \to E_2 + 1$     | $\beta_2 T V_2$ |
| $E_1 \to E_1 - 1, I_1 \to I_1 + 1$ | $k_1 E_1$       |
| $E_2 \to E_2 - 1, I_2 \to I_2 + 1$ | $k_2 E_2$       |
| $I_1 \rightarrow I_1 - 1$          | $\delta_1 I_1$  |
| $I_2 \rightarrow I_2 - 1$          | $\delta_2 I_2$  |
| $V_1 \rightarrow V_1 + 1$          | $p_1I_1$        |
| $V_2 \rightarrow V_2 + 1$          | $p_2I_2$        |
| $V_1 \rightarrow V_1 - 1$          | $c_1V_1$        |
| $V_2 \rightarrow V_2 - 1$          | $c_2V_2$        |
|                                    |                 |

### Probability of stochastic extinction

The CTMC model approximated by multi-type branching process under appropriate conditions enabled to derive the probability that the infection does not become established which is known as extinction probability,  $\xi(\rho_{V_1}\rho_{E_1}\rho_{I_1}\rho_{V_2}\rho_{E_2}\rho_{I_2}).$ ( . . . )

$$\rho_{V_1} = \min\{\frac{c_1(p_1 + \delta_1)}{p_1(c_1 + \beta_1 T)}, 1\}$$

$$\rho_{E_1} = \rho_{I_1} = \min\{\frac{\delta_1(c_1 + \beta_1 T)}{\beta_1 T(p_1 + \delta_1)}, 1\}$$

$$\rho_{V_2} = \min\{\frac{c_2(p_2 + \delta_2)}{p_2(c_2 + \beta_2 T)}, 1\}$$

$$\rho_{E_2} = \rho_{I_2} = \min\{\frac{\delta_2(c_2 + \beta_2 T)}{\beta_2 T(p_2 + \delta_2)}, 1\}$$

- There is a non zero value for extinction probability that depends on the parameters that describe the virus-cell interactions.
- Probability of disease outbreak is  $(1-\xi)=1-\frac{1}{\mathcal{R}_{01}}\frac{1}{\mathcal{R}_{02}}$ .

#### Parameter values

| Parameter                                                                                                                                                                                                                                                                                                         | Value                | Units                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|
| $\beta$                                                                                                                                                                                                                                                                                                           | $3.2 \times 10^{-5}$ | $cell^{-1} [V]^{-1} d^{-1}$ |
| k                                                                                                                                                                                                                                                                                                                 | 4.6                  | $d^{-1}$                    |
| $\delta$                                                                                                                                                                                                                                                                                                          | 5.2                  | $d^{-1}$                    |
| p                                                                                                                                                                                                                                                                                                                 | $4.6\times10^{-2}$   | $[V] d^{-1}$                |
| С                                                                                                                                                                                                                                                                                                                 | 5.2                  | $d^{-1}$                    |
| $T_0$                                                                                                                                                                                                                                                                                                             | $4.0 \times 10^8$    | cell                        |
| $V_0$                                                                                                                                                                                                                                                                                                             | $7.5 \times 10^{-2}$ | [V]                         |
| Growth rate, $\lambda = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{u^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{u^3}{27}}} - \frac{B}{3}$<br>$u = C - \frac{B^2}{3}, q = D + \frac{2B^3 - 9BC}{27}$<br>$B = k + \delta + c, C = k\delta + kc + c\delta,$<br>$D = -kc\delta(R_0 - 1)$ |                      |                             |

#### Same growth rate

# curve:







stochastic realizations.



