Role of ClpX and ClpP in antibiotic resistance in *Bacillus anthracis* Quinn Losefsky, Shauna McGillivray Department of Biology, Texas Christian University, Fort Worth, TX

ABSTRACT

Bacillus anthracis is a Gram-positive bacterium that causes anthrax in human significant microorganism in that many proteins important to virul pathogenesis are highly conserved in many other pathogenic bacteria. Our previously identified the protein ClpX in Bacillus anthracis as meta significant in antibiotic resistance. Specifically, B. anthracis lacking the cl $(\Delta ClpX)$ are significantly more susceptible to antibiotics that target the bact wall such as penicillin than the wild type. ClpX has multiple functions; pri interacts with ClpP to form a proteolytic complex that degrades dysfunc obsolete proteins. ClpX also has an independent chaperone function, moving around the cell. This project has focused on determining if the pathway of a antibiotic resistance in mutant B. anthracis is dependent on ClpX interacti ClpP, or if ClpX can function independently. To test this, a point mutation was made in the *ClpX* gene at the site that has been previously identified as t interaction between ClpX and ClpP in Staphylococcus aureus. The ClpX ge anthracis and S. aureus exhibit a high degree of conservation particularl region, and it is expected that this site will also be critical for ClpX interaction in B. anthracis. The mutated ClpX gene (I265E) has been confirm sequencing and has been transformed as an inducible expression plasmid $\Delta ClpX$ B. anthracis strain. Preliminary assays to determine the antibiotic of the mutant strain have shown marked decrease in resistance to pend compared to the wild-type or the complemented strain.

BACKGROUND

ClpX is a regulatory ATPase that functions along with ClpP as a subunit of the ClpXP protease, which is essential for regulating the degradation of proteins in *Bacillus anthracis.* Previous studies show that deletion of clpX ($\Delta clpX$) results in an increased susceptibility to antimicrobial agents that target or interact with the cell wall. ClpX also has an independent chaperone function which is being explored in this project.

Question: Is ClpX-mediated antibiotic resistance dependent on ClpP through the ClpXP protease, or is it through independent chaperone functions of ClpX alone?

This figure shows the two ClpX pathways; association with ClpP to form a proteolytic complex or independent protein processing

CONSTRUCTION OF CLPXI265E MUTATION

ans. It is a								
ilence or	Sa	ClpX:	MFKFNEDE	ENLKCSFC	GK	DQDQ'	VKKLVA	GSGV
ır lab has	Ba	ClpX:	MFKFNDEK	GQLKCSFC	GK	TQTQ	VRKLVA	GPGV
abolically			****::::	:*****	**	* *	* : * * * *	* * * *
clpX gene	Sa	ClpX:	ITELPTPK	EIMDHLNE	YVIG	QEKAI	KKSLAV	AVYN
cterial cell	Ва	ClpX:	FKDVPKPVI	FIREILDE	YVIG	ODNAI	KKAT.AV	ZAVYNI
cimarily it	Du	HANN .				ىلىيەتىرىي		
ctional or			:.::*.*	~~ : ~:~	* * * *	*::*	** ***	
g proteins	Sa	<u>Clpx</u> :	PTGSGKTLI	LAQTLAKT	LNVP	FAIA	DATSLT	'EAGY'
decreased	Ba	Clpx:	PTGSGKTLI	LAQTLARI	LNVP	FAIA	DATSLT	'EAGY'
tions with			*****	*****:	****	****	*****	****
n (I265E)	Sa	ClpX:	IIYVDEID	KIARKSEN	TSIT	RDVS	GEGVQC)ALLK
the site of	Ba	ClpX:	IIYIDEID	KVARKSEN	PSIT	RDVS	GEGVQC	ALLK
enes in <i>B</i> .			*** *****	* : * * * * * *	***	****	*****	****
ly in this	e -	Clov.		- 	FUTE	DDTC		20 0 - MI
and ClpP	24	ATRU.	TINTETT	JOALDGIE	EVIN	KKUG	PUATOL	'M-66'
med with	Ba	ClpX:	TTNILFIC	GGAFDGIE	PIIK	RRLG	EKVIGF	'GSEKI
d into the			*****	*****	**	****	*****	· · * :
resistance	Sa	ClpX:	LIPEFIGR	VPIVANLE	TLDV	TALK	NILTQF	KNAL
nicillin as	Ba	ClpX:	LIPEFIGR	LPVIANLE	PLDE	DALV	DILTKE	KNAL
			*****	:*::***	**	**	: * * * : *	****
	Sa	ClpX:	EKAIERKT	GARGLRSI	IEES	LIDI	MFDVPS	SNENV'
		alex.	VVATEDV0/	CADCIDCI	TRAT			ידמעמי
	Ba	ATRU:	NNALEKNI	закецкат		LIPF A1	MELLPO	- KKDTI
			******	******	**		**::**	(. : : : : ·

marked with an asterisk, those that are "interchangeable" are marked with a semicolon, and those that are chemically similar to a lesser extent are marked with a period. The bolded amino acids are part of a highly conserved region that is important for ClpP association, and the amino acid marked in red is the target of site-directed mutagenesis.

SITE DIRECTED MUTAGENESIS

Image provided by IntechOpen.com

I265E Mutant Sterne Strain

The four strains of *B. anthracis* that were used in the Minimum Inhibitory Concentration Assays. Site-directed mutagenesis was used to create the I265E mutant plasmid (pClpXm) which was then transformed into the Δ ClpX strain.

GVYICNEC	IELCSEIVEEELAQNTSEA
GVYICDEC	IELCTEIVQEELAKDEEVE
****:**	****:***:***:: .
YNHYKRIQ	QLGPKEDDVELQKSNIALIG
YNEYKRIN	SN-SKIDDVELAKSNIALIG
*****	* *****
GYVGDDVE	NILLRLIQAADFDIDKAEKG
GYVGEDVE	NILLKLIQAADYDVEKAEKG
****:***	****:*****:*::*::***
LKILEGTT	ASVPPQGGRKHPNQEMIQID
LKILEGTV	ASVPPQGGRKHPHQEFIQID
******	*******
-NEAD	KYDEQALLAQIRPEDLQAYG
EKKNA	DVNEKHVLSHVLPEDLLRFG
::	. :*: :*::: **** :*
ALVKQYTK	MLELDDVDLEFTEEALSAIS
ALVKQFQK	LLELDDVELEFEEGALIEIA
****: *	*****
NVTKVVIT	AQTINEETEPELYDAEGNLI NNSKTSA
DIEKCILT	KETVADNAAPKLVLQDGTVL D-TKTSA
:: * ::*	:*: ::: *:* :*.:: : :****

The alignment of the *clpX* gene in *s. aureus* and *B. anthracis*. Amino acids that are identical are

MIC Assays were performed with the four previously described strains of B. anthracis in increasing concentrations of penicillin. The wild type and complement strain showed phenotypical levels of antibiotic resistance, whereas the knockout and I265E mutant complement had no growth even in the lowest concentration of penicillin. This is consistent with the ClpP-dependent pathway

NS indicates no significance, **** indicates a P value of <0.0001. Statistical analysis performed with a 2-way ANOVA and Tukey analysis.

Preliminary MIC Assay results strongly suggest that this pathway is ClpP dependent in nature. The mutant strain (I265E) did not show restored phenotype of resistance, suggesting that the process of resistance requires association of ClpX and ClpP into a proteolytic complex. Additional MIC assays will be performed with other antimicrobials such as vancomycin and lysozyme. Additionally, *Bacillus* anthracis is unique in that it has two forms of the ClpP protein, ClpP1 and ClpP2. The next step would be to determine if these two different isotypes have different functions within the cell, and if the differences effect the ClpXP proteolytic pathway of antibiotic resistance.

McGillivray, Shauna M. "ClpX Contributes to Innate Defense Peptide Resistance and Virulence Phenotypes of Bacillus Anthracis." Journal of Innate Immunity, vol. 1, no. 5, 2009, pp. 494–506.

Mcgillivray, Shauna M., and Dan N. Tran. "Pharmacological Inhibition of the ClpXP Protease Increases Bacterial Susceptibility to Host Cathelicidin Antimicrobial Peptides and Cell Envelope-Active Antibiotics." Antimicrobial Agents and Chemotherapy, vol. 56, no. 4, 2012, pp. 1854–1861.

Stahlhut, Steen, et. al. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Scientific Reports. June 2017

RESULTS

CONCLUSIONS

REFERENCES

ACKNOWLEDGEMENTS

Thank you to the TCU SERC for providing funding for this project.