The Effect of the NS5A 10A Protein of Hepatitis C on the Innate Immune Response

Abstract

Hepatitis C is a disease of the liver that is caused by the Hepatitis C virus. The Hepatitis C virus (HCV) chronically infects between 130-170 million people in the world making it a significant health burden. HCV is 9.6 kb single-stranded RNA virus and a member of the Flaviviridae family of viruses which includes viruses such as Zika and Dengue. It is a smaller virus with a mature virion size between 50-80 nm. With a specific tropism for liver cells, the diseases of Hepatitis C are accordingly associated with the liver. The two predominant diseases related to HCV infection are cirrhosis and hepatocellular carcinoma. These are both caused as a result of chronic infection which occurs in about 80% of cases as opposed to acute infection which composes only 20% of cases. In order to establish a chronic infection the virus has evolved the ability to inhibit the innate immune response leading to a greater likelihood of reproduction and survival. Our specific interest was the mechanism by which HCV evades the host immune response. In previous studies we have shown that NS5A 10A, a mutant protein of NS5A, inhibits the activation of the IFN- β promoter which serves a key role in the innate immune response. In this paper we investigate the specific mechanism of the ability of NS5A 10A to interfere with the activation of the IFN-β promoter.

Hypothesis

Eli Reynolds and Dr. Giridhar Akkaraju Texas Christian University, Fort Worth, TX

Synthesized by Dr. Green and Marianne Burnett, Department of Chemistry

Mode of Action

Compounds

Results

Discussion

Conclusions

Future Directions