

Why Understanding Solvent Softness Matters?

- Extension of Pearson's concept of hard and soft acids and bases (HSAB) to solution implies that *chemically hard solvents tend to dissolve hard solutes and soft* solvents dissolve soft solutes
- Several aspects of solution chemistry have been attributed to solvent hardness and softness, *e.g.*:
- (1) In aqueous-organic solvent mixtures, the sulfates of "soft" Cd²⁺ tend to become less soluble with increasing water content, whereas sulfates of "harder" 3d cations like Cu²⁺ and Co²⁺ show the opposite trend
- (2) The relatively hard chloride salts of Ni²⁺ and Co²⁺ show higher solubility with increasing water content, whereas the softer bromide salts show opposite trend
- (3) In soft acetonitrile, metal cation complexes of N-phenylaza-15-crown-5 show stability order $Ca^{2+} > Cd^{2+} > Mg^{2+} > Ag^{+}$, but opposite order in harder methanol
- (4) Phenol alkylation by 3-bromopropene produces mostly allyl phenyl ether in "harder" acetone and mostly o-allyl phenol in "softer" benzene or toluene
- (5) Sodium phenolate alkylation by 3-chloropropene gives near 100% O-alkylation in ethanol and only 22% O-alkylation in phenol
- (6) Substitutions of soft/hard groups on ionic liquids (ILs) imparts a drastic change to their viscosity, enthalpy of vaporization and the ion conductivities
- (7) The hardness/softness of ions of ILs directly controls the solubility of materials like polymers in them.

Quantification of Solvent Softness

Empirical Scales of Solvent Softness/Hardness

- A number of solvent softness scales have been developed based on the measurements of infrared or Raman spectral shifts, half-wave potentials, reaction enthalpies, second-order rate constants and fluorescence shifts *etc*.
- The µ-scale of solvent softness proposed by Marcus is based on the difference between Gibbs energies of transfer for "**soft**" Ag⁺ vs "hard" Na⁺ and K⁺:

$$\mu = \frac{\Delta_{tr} G^{\circ}(\mathrm{Ag^{+}}) - 0.5[\Delta_{tr} G^{\circ}(\mathrm{Na^{+}}) + \Delta_{tr} G^{\circ}(\mathrm{K^{+}})}{100 \text{ kJ mol}^{-1}}$$

- µ-scale quantifies the relative softness of a solvent
- For hard solvents μ is negative and soft solvents have positive value of μ

Electronic Structure Methods

• Chemical hardness (n) is defined in the realm of conceptual density functional theory (DFT) and global chemical softness (S) is the inverse of hardness:

$$\eta \equiv \left(\frac{\partial^2 E}{\partial N^2}\right)_{v(r)}$$

Where *E* is the energy of system containing *N* electrons.

- **n** is approximated in terms of the ionization potential, *I*, and electron affinity A: $\eta \approx I - A$
- These quantities can be calculated through total energies of neutral (E_N), cationic (E_{N-1}) and anionic (E_{N+1}) species of the optimized molecular geometry

$$I = E_{N-1} - E_N$$
$$A = E_N - E_{N+1}$$

• An alternative method is provided by Koopman's theorem, according to which, the chemical hardness is defined in terms of frontier molecular orbitals energies:

$$\eta \approx Gap = E_{LUMO} - E_{HOMO}$$

An Orbital-overlap Scale for Solvent Hardness and Softness Arshad Mehmood and Benjamin G. Janesko

Department of Chemistry & Biochemistry

Orbital Overlap Distance and Chemical Softness

- The Orbital Overlap Distance $D(\vec{r})$ quantify whether the orbitals at a given point are compact or diffuse
- overlaps over distance "d"²⁻³

 $EDR(\vec{r};d) = \int d^3\vec{r}'g_d(\vec{r},\vec{r}') \gamma(\vec{r},\vec{r}')$

 $g_d(\vec{r}, \vec{r}') \equiv \rho^{-1/2}(\vec{r}) \left(\frac{d}{dr}\right)$

chemically soft, unstable atoms

(Left) Optimized geometry (Middle) Green and red surfaces are representative occupied orbitals HOMO and HOMO-1. Blue surfaces are the test function plotted at 80% of its maximum value $D(\vec{r}_1) = 2.9$ bohr and $D(\vec{r}_2) = 3.4$ bohr (Right) Plot of $D(\vec{r})$ on 0.001 e/bohr³ electron density surface (D_{surf}).

Correlation between mean D_{surf} and \mu-scale of Softness

- (Mean D_{surf}) to fit the empirical µ-scale of softness
- **RMSD** D_{surf} can be used to characterize the solvating ability of solvents

and compliments the findings of global softness.

• It is constructed from the Orbital Overlap Range Function $EDR(\vec{r}; d)$ which quantifies the extent to which an electron at point \vec{r} in a calculated wave function

$$\left(\frac{2}{d^2}\right)^{3/4} exp\left(-\frac{|\vec{r}-\vec{r}'|^2}{d^2}\right)$$

 $D(\vec{r}) = \arg \max EDR(\vec{r}; d)$

• Compact, chemically stable atoms tend to have overlap distances smaller than

• We used the mean value of $D(\vec{r})$ plot on 0.001 e/bohr³ electron density surface

Softness

Mean D_{surf} = 3.40 bohr RMSD D_{surf} = 0.19 bohr **Solvation ability**

• Fitting Mean D_{surf} to the empirical µ-scale of softness gives excellent correlation

Applications to ionic liquids

- ionic liquids (ILs)

Ionic Liquid	Mean D _{surf} (bohr)	RMSD D _{surf} (bohr)	Predicted µ
[N _{1 1 1 6}][Br]	3.373	0.123	0.536
[C ₂ py][Br]	3.350	0.157	0.503
[N _{1 1 1 6}][CI]	3.338	0.082	0.486
[emim][Br]	3.337	0.178	0.484
[mPhim][Br]	3.332	0.168	0.478
[C ₂ py][CI]	3.302	0.106	0.436
[mPhim][CI]	3.292	0.126	0.421
[emim][CI]	3.290	0.133	0.419
[N _{1 1 1 6}][MeSO ₄]	3.221	0.178	0.321
[mPhim][MeSO ₄]	3.175	0.176	0.255

Acknowledgment

References

• Linear fits of experimental Marcus μ parameter to D_{surf}, global softness 1/ η and HOMO-LUMO Gap. Fits are performed for the 34 solvents in Table I of Ref. [1]. A = All data, B = Without outliers, C = Without outliers, D_{surf} on charged areas only.

ata	Equation	R ²	MAE
A	$\mu = 1.349 D_{surf} - 4.026$	0.209	0.230
В	μ = 1.413 D _{surf} – 4.325	0.445	0.126
С	$\mu = 1.418 D_{surf} - 4.249$	0.659	0.244
A	μ = 0.397(1/η) – 0.848	0.292	0.194
В	μ = 0.547(1/η) – 1.150	0.331	0.170
A	μ = 0.277(1/Gap) – 0.891	0.531	0.176
В	M = 0.214(1/Gap) – 0.687	0.294	0.123

• We used the obtained best linear fitting model to predict the µ values for selected

• Anionic part plays fundamental role to control the softness of ionic liquid.

Ionic liquids having [Br] and [CI] as anions have large value of µ

• RMSD D_{surf} increases with decrease in Mean D_{surf} where ionic liquids having hard anions and small μ values shows large RMSD D_{surf}.

 National Science Foundation Award DMR-1505343 • TCU CSE Graduate Student Research Fund (GSRF)

1. Marcus Y., J. Phys. Chem, **1987**, 91, 4422-4428. 2. Ayers P. W., J. Chem. Phys., 2005, 122, 141102. 3. Mehmood, A.; Janesko, B. G. Angew. Chem. Int. Ed. 2017, 56, 6878–6881 4. Mehmood, A., Janesko, B. G. Submitted.