

Introduction

nanospheres paste.

paste.

Optimization of Tin(IV) Nanoparticles for Improved Performance in Dye-Sensitized Solar Cells Bach S. Pham and Benjamin D. Sherman Department of Chemistry & Biochemistry, Texas Christian University, TX 76129

Current density vs. voltage plot of different types of semiconductor layers: mixture of nanoflowers and nanospheres at 1:1 ratio (red), mixture of nanoflowers and nanospheres at 1:2 ratio (black), and nanospheres at 2:1 ratio (blue), only only

$C(mA.cm^{-2})$	Mean V _{OC} (V)	Mean P _{max} (mW.cm ⁻²)	Ν
5 ± 0.6	0.30 ± 0.03	0.3 ± 0.1	
± 0.07	0.41 ± 0.01	0.06 ± 0.02	
$t \pm 0.2$	0.38 ± 0.01	0.38 ± 0.07	
5 ± 0.5	0.36 ± 0.02	0.29 ± 0.07	
5 ± 0.1	0.399 ± 0.002	0.40 ± 0.04	

Chemistry & Biochemistry

An assembled DSSC with the photoanode facing up (left) and with the platinum-coated cathode facing up (right). The cathode has 2 drilled holes for introduction of the electrolyte solution in between the electrodes.

Mean Fill Factor

(41 ± 9)%	
$(62 \pm 2)\%$	
$(50 \pm 4)\%$	
$(45 \pm 4)\%$	
$(44 \pm 5)\%$	

short circuit current Mean density, open circuit voltage, maximum power, and fill factor, along with their uncertainties, of five DSSC types with different semiconductor layer.

Conclusion

• The mixture of tin(IV) oxide nanospheres and nanoflowers increase the performance of the solar cell overall. • Future approach: study DSSCs made by the aforementioned mixture that are further modified by a titanium coating on the SnO₂ surface and evaluate how good these DSSCs are in

performing water-splitting reactions.

1) Grätzel, M. Photoelectrochemical Cells. *Nature*, **2001**, 414, 338-

2) Arote, S. A.; Tabhane, V. A.; Pathan, H. M. Enhanced Photovoltaics Performance of Dye Sensitized Solar Cell Using SnO₂ Nanoflowers. *Optical Materials* **2017**, *75*, 601–606. 3) Xu, P.; Mccool, N. S.; Mallouk, T. E. Water Splitting Dye-Sensitized Solar Cells. *Nano Today* **2017**, *14*, 42–58.