
Authors: Kien Nguyen, Quang Truong, 
Kimon Vogt, Megan Phan, Khiem Nguyen

 
Advisors: Dr. Liran Ma, Dr. Ze-Li Dou

Conclusions and Future Work Technologies Used References Acknowledgements

What Is Go?

Goals

Monte Carlo Tree Search (MCTS) The Single Neural NetworkBackground & Tools
• Go is a Chinese board game for two players, in which the aim is to 

surround more territory than the opponent. One player plays with 
white stones, and the other plays with black stones. The official grid 
comprises 19x19 lines, containing 361 points.

Strategy

• Strategy deals with global 
influence, interaction 
between distant stones, 
keeping the whole board in 
mind during local fights, and 
other issues that involve the 
overall game. It is therefore 
possible to allow a tactical 
loss when it confers a 
strategic advantage. 

Area Scoring
• A player’s (final) score is the number of stones 

that the player has on the board plus the 
number of empty intersections surrounded by 
that player’s stones.

• March 2016. AlphaGo defeated Lee Sedol, the winner of 18 
international titles, 4-1 in a five-game match, shocking the world.

• AlphaGo was then improved to a newer version called 
AlphaZero, a stronger AI program that self-trained, with NO prior 
knowledge, after being told only the rules of the game.

• Gian-Carlo Pascutto combined 
the Monte Carlo Tree Search 
and a neural network into 
building the world’s most 
successful open-source Go 
engines - first Leela, then 
LeelaZero - which mirrored the 
advances made by DeepMind.

• The tree search and the neural network, through Reinforcement 
Learning, improve one another during training to produce better 
move decision and stronger self-play in the next iteration (self-play 
game).

C++ is the 
programming language 
used to write the 
LeelaZero program.

Python is the 
programming 
language used to train 
the program using 
TensorFlow 

Go Game Overview: https://en.wikipedia.org/wiki/Go_(game)
LeelaZero GitHub Repository: https://github.com/gcp/leela-zero
Sabaki GitHub Repository: https://github.com/SabakiHQ/LeelaSabaki
AlphaZero Overview: https://deepmind.com/documents/119/
agz_unformatted_nature.pdf
The New Yorker’s Article About AlphaZero and LeelaZero: https://
www.newyorker.com/science/elements/how-the-artificial-intelligence-
program-alphazero-mastered-its-games
Monte Carlo Tree Search Overview: http://mcts.ai/

The AI 2 Go team would like to thank the following professors:
• Dr. Liran Ma for advising the team throughout the project and holding 

interesting meetings for us to discuss challenging problems and to learn 
new concepts about Artificial Intelligence.

• Dr. Ze-Li Dou for inspiring the team through his idea proposal of 
discovering the optimal solutions and of integrating the Go game into 
teaching.

• Dr. Bingyang Wei for showing the team the way to approach the project 
in the most direct and efficient way.

We also thank the CSE and the Computer Science Department for 
providing us the GPU support.

• Obtain optimal solutions 
for board sizes from 3x3 to 
9x9.

• Integrate the project idea 
into teaching in mathematic 
topics.

• Convert the original 19x19 board size into smaller odd ones.
• Use the original weight file provided by Pascutto to run the program and 

investigate the structure of the weight files and convert them to fit the 
training with different board sizes.

• Investigate the weight files and modify the source code to achieve the 
goal. 

• Move on to train the program on different board sizes, record the results 
to find out the optimal solutions, and compare with the mathematically 
proven results.

Challenges
• The complete 

understanding of the 
source code.

• The investigation and 
modification of the source 
code.

• MCTS is a go-to algorithm for writing bots to play discrete, 
deterministic games with perfect information. MCTS selectively 
tries moves based on how good the game-in-progress is in an initial 
state, and it is the bot’s turn to play.

Visualizing MCTS

MCTS In AlphaZero
• Each edge (s, a) in the search tree stores a prior probability P(s, a), 

a visit count N(s, a), and an action value Q(s, a).
• Each simulation starts from the root state and iteratively selects 

moves that maximize an Upper Confidence Bound Q(s, a) + U(s, 
a).

a. Traverses the tree until reaching a leaf node.
b. The leaf node expands to simulate next possible 

moves (looking ahead).
c. Action value Q is updated to track the mean of all 

evaluations V in the subtree below that action.
d. Once the search is completed, the search 

probabilities π are returned.

• The neural network in AlphaZero takes the raw board representation 
s of the position and its history as an input, and outputs both move 
probabilities p and a value v, (p, v) = ƒ(s).

• The vector p represents the probability of selecting each move a 
(including pass), Pr(a |s)

• Value v is a scalar, estimating the probability of the current player 
winning from position s.

• This network combines the roles of both policy network and value 
network into a single architecture.

Self-Play Training Pipeline

• The main idea of the reinforcement learning algorithm is to use these 
search operators repeatedly in a policy iteration procedure: the 
network’s parameters are updated to make the move probabilities 
and value (p, v) more closely match the improved search 
probabilities and self-play winner (π, z).

z

Sabaki - LeelaZero GUI


