

## Abstract

In this experiment, the mechanical properties of 3-D printed specimens of different printing parameters were tested under tension. The printing parameters of these specimens were: print orientation, infill density, and surface resolution. Parts were printed in Onyx ( a composite material made of nylon with carbon chopped microfibers) with a Fused Deposition Modeling (FDM) printer called the Markforged Onyx Pro. Factorial sets of specimens using all various parameters are printed and tested to create a reference table for future engineering projects. Specimens were then printed in Onyx with added directional continuous fibers (fiberglass) to understand the benefits of directional reinforcement on mechanical properties.

## Background

3D printing allows the user to select many combinations of print settings. These include: infill %, layer thickness, orientation, infill pattern, wall thickness, wall count, nozzle temperature, bed temperature, material... Mechanical properties can change drastically based on these settings. Understanding these relationships allows a designer to obtain specific desired properties in 3-D printed parts.

**Experimental Procedures** Specimens were pulled to ASTM D638 standards a) 12 different combinations of print settings using only Onyx material

- 1. 100%, 50%, 10% fill
- 2. 0.1mm/0.2mm layer height
- 3. Upright/Flat print orientation
- b) 4 specimen sets with various amount of directional fiberglass added during the build Onyx
  - 1. All flat, 100% fill, 0.1 mm layer height
  - 2. 2, 4, 8, and 16 layers of fiberglass added to the
    - part aligned in direction of pull

# FDM 3D Printing Mechanical Property Testing By: Luke DeVooght, Melina Aguero --- Advisor: Dr. Becky Bittle TCU Department of Engineering



Science and Engineering Research Center

2.Peak stress increases linearly with number of layers.

