

Spatial and Temporal Variation in Nitrate Contamination as a Function of Well Depth in the Seymour Aquifer

Caitlin Payblas – Department of Environmental Science

Faculty Advisors: Dr. Omar Harvey and Tamie Morgan, Department of Geological Science

Introduction

- Nitrate nitrogen (NO₃-N) contamination of groundwater in the Seymour Aquifer has been documented since pre-1960.
- Concentrations as high as 35 mg/L NO₃-N have been reported (3.5 times the EPA allowable standard for drinking water).
- While most water from the Seymour Aquifer is used for agricultural irrigation, a portion is still used for domestic purposes and poses potential risk to human health.
- The specific source of NO_3 -N contamination is still debated

Research Approach

- ✤ Three possible sources of NO₃-N contamination were considered in this study
 - ✤ geology of the aquifer (natural salt) accumulation from water confined in patches of Quaternary-age alluvium)
 - contribution of nitrate from sewage and agricultural fertilizers (cotton, wheat, peanuts)
 - ✤ historical land use change of the area above the aquifer (leguminous nitrogen-fixing mesquite cleared in the 1930's for agriculture)

Study Area

- ✤ My research combined statistical and geospatial analysis with specific objectives:
 - 1) Viewing nitrate contamination as a function of well depth
 - ✤ Groundwater quality data from the Texas Water Development Board was used in conjunction with geospatial analysis to identify the correlation of NO3-N with well depth
 - Empirical Bayesian kriging (EBK) analysis was used to interpolate well depth and $log[NO_3-N]$ across the study area pre-1960 (pre-heavy fertilizer use) and thereafter.
 - ✤ Based off of previous studies, it was expected that shallower wells would have higher NO3-N concentrations
 - 2) Determining the temporal change in NO3-N concentrations over a distribution of well depth
 - ✤ After determining that aquifer wells had a Gaussian (normal) distribution, depths were partitioned into four percentiles
 - The log(NO3-N) was taken in order to distribute the data normally, and an EBK was performed

Research Approach (Continued)

- Coordinates of wells containing no depth data and/or no NO₃-N data were excluded from this study
- Depth over all wells sampled meeting the criteria above were broken into quartiles (the 25th, 50th, 75th, and 100th percentile)

✤ Figure on left: Well data had a Gaussian distribution throughout all decades

Conclusions and Further Research

- ◆ Log[NO₃-N] concentrations are significantly higher in shallower wells
- Over time, median concentrations of $log[NO_3-N]$ are increasing in deeper wells, and two probable scenarios exist:
 - 1) NO₃-N is leaching downwards into deeper wells over time
 - 2) Excessive pumping has begun to force NO_3 -N contamination into deeper wells
- ✤ Further research will include:
 - Consideration of land cover development over time
 - Conducting well sampling transects longitudinally across the middle of the aquifer as well as taking samples from NO₃-N "hot spots" to provide a better view of present aquifer contamination in relation to concentration and depth
 - Conducing a detailed isotopic analysis to differentiate between origins of NO₃-N as soil N and sewage N

References and Acknowledgements

"Groundwater Database (GWDB) Reports." Groundwater Data | Texas Water Development Board, Texas Water Development Board, www.twdb.texas.gov/groundwater/data/gwdbrpt.asp. "Texas Natural Resources Information System." TNRIS - Texas Natural Resources Information System, thris.org/.

Research Findings

Temporal Variation

pre-1960
1966-1975
1976-1985
1986-1997

Well Depth (ft)

✤ The median concentrations of log(NO3-N) have increased in deeper wells over time, with a tremendous increase occurring from 1986-1997 in wells between 47-55 ft, and greater than 55 ft deep.

• Key for $\log[NO_3-N]$ represents a log normal distribution

Well Decade

	٠	Pre-1960
2	٠	1966-1975
28	•	1976-1985
	٠	1986-1997

