

Invariants of Triple Conics in \mathbb{P}^3

FAZLE RABBY Advisor: Scott Nollet

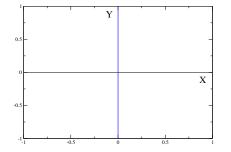
Department of Mathematics, Texas Christian University, Fort Worth, TX

1. Multiplicity Structures on Algebraic Curves

Definition 1.1. An *algebraic set* is the solution set of a system of polynomial equations. The coefficients of the polynomials can be taken from \mathbb{R} or \mathbb{C} , or from any field \mathbb{F} .

Definition 1.2. An *algebraic curve* is a one dimensional algebraic set.

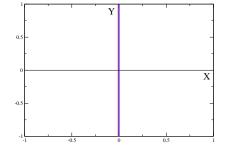
Example 1.3. The solution set of the polynomial equation x = 0 in \mathbb{R}^2 is the Y-axis.



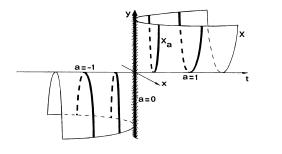
Definition 1.4. Let $X \subset \mathbb{P}^3$ be a nonsingular connected curve. A multiplicity structure on X is some curve Y such that $\operatorname{Supp} Y = \operatorname{Supp} X$. If Y has no embedded or isolated points then its multiplicity can be defined to be the integer

$$\operatorname{mult}(Y) = \frac{\deg Y}{\deg X}$$

Example 1.5. The solution set of the polynomial equation $x^2 = 0$ in \mathbb{R}^2 is a double structure on the Y-axis.



Example 1.6. Consider the polynomial equation $ty - x^2 = 0$. For each $t \neq 0$ we get a parabola in \mathbb{R}^3 . But for t = 0 the equation becomes $x^2 = 0$, whose solution set is a double structure on the Y-axis.



A family of smooth parabolas deforms into a double line.

2. DOUBLE CONICS

Definition 2.1. A *conic* in \mathbb{P}^3 is a degree two integral curve. In other words, every conic in \mathbb{P}^3 is a nondegenerate plane section of the quadric cone.



Quadric cone in \mathbb{R}^3

Let $\mathbb{P}^3 = \operatorname{Proj} S$, where S = k[x, y, z, w] and k is algebraically closed. Let C be a conic in \mathbb{P}^3 . Then up to a change of coordinate $I_C = (x, q)$, where $q = yz - w^2$.

Theorem 2.2 (R-). Let Z be a double conic on C with arithmetic genus $-1 - \ell$, where $\ell \geq -1$. (1) If ℓ is even, say $\ell = 2a$, then

$$I_Z = (I_C^2, fq - gx),$$

where f, q are homogeneous polynomials in S of degrees a+1and a+2 respectively, such that their images \bar{f}, \bar{q} in S_C form a regular sequence.

(2) If ℓ is odd, say $\ell = 2a + 1$, then

$$I_Z = (I_C^2, F_1 q - G_1 x, F_2 q - G_2 x),$$

where $\{F_1, G_1\}, \{F_2, G_2\}$ is an admissible pair of sequences of type I on C such that deg $F_i = a + 2$ and deg $G_i = a + 3$.

Remark 2.3. A double conic Z on C of arithmetic genus $-1 - \ell$ is a complete intersection if and only if $\ell = -4$ or -2.

Proposition 2.4 (R-). Let Z be a double conic in \mathbb{P}^3 of arithmetic genus $-1 - \ell$, where $\ell \geq -1$. Then S_Z has projective dimension 3. In particular, Z is not projectively normal.

Theorem 2.5 (R-). A double conic in \mathbb{P}^3 is self-linked by complete intersection curves if and only if char k = 2.

Proposition 2.6 (R-). Let \mathcal{H}_Z^{ℓ} be the Hilbert scheme of double conics in \mathbb{P}^3 of arithmetic genus $-1 - \ell$. Then \mathcal{H}_Z^{ℓ} is irreducible of dimesion $2\ell + 16$.

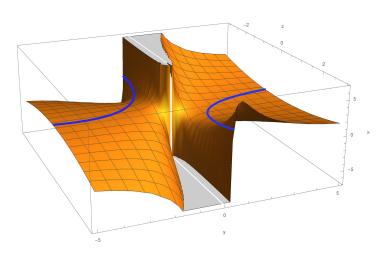
3. Surfaces containing Double Conics

Theorem 3.1 (R-). Let Z be a double conic on C of arithmetic genus $-1 - \ell$. If Z is contained in some nonsingular surface F of degree d > 0, then $\ell = 2d - 6$.

Proposition 3.2 (R-). Let Z be a double conic on C of arithmetic genus $-1 - \ell$. If char k = 0 and $d \gg 0$ then a general surface F of degree d containing Z is integral and normal. Moreover, $\operatorname{Sing} F$ is a finite set and

$$|\operatorname{Sing} F| = \begin{cases} 2d - 1\\ 2d - 1 \end{cases}$$

Example 3.3. Let $\ell = 0$. Then $I_Z = (I_C^2, zq - y^2x)$ defines a double conic Z on C. Notice, I_C^2 defines a triple structure on C and the surface $zq - y^2 x = 0$, which is nonsingular along C, cuts out the double conic Z.



4. QUASI-PRIMITIVE AND THICK EXTENSIONS

Definition 4.1. Let $X \subset \mathbb{P}^3$ be a nonsingular connected curve and let Y be a multiplicity structure on X. (1) Y is called a *quasi-primitive* extension of X if it has embedding dimension two at all but finitely many points. (2) Y is called the *thick* extension of X if it has embedding dimension three at each point. Also in that case $I_Y = I_X^2$.

Remark 4.2. If Y is a multiplicity structure on a nonsingular connected curve $X \subset \mathbb{P}^3$ then it is either a quasi-primitive or a thick extension.

Example 4.3. Let $X \subset \mathbb{P}^3$ be the line given by $I_X = (x, y)$. Then $I_Y = (x^2, xy, y^3, y^2z - w^2x)$ defines a quasi-primitive triple line Y on X. On the other hand, $I_X^2 = (x^2, xy, y^2)$ defines the thick triple line on X.

 $\ell - 6$, if ℓ is even $\ell - 4$, if ℓ is odd.

Graph of $zq - y^2 x = 0$ in \mathbb{R}^3 .

5. STRUCTURE THEOREM OF TRIPLE CONICS

Theorem 5.1 (R-). Let Z be a double conic on C of type ℓ with $I_Z \otimes S_C \subseteq S_C[m] \oplus S_C[n]$. Let $\phi : I_Z \to S_C[2\ell + c]$ be the map defined as

$$\phi: I_Z \to I_Z \otimes S_C \subseteq S_C[m] \oplus S_C[n] \xrightarrow{\psi} S_C[2\ell + c],$$

where $c \in \mathbb{Z}_{\geq 0}$ and Coker ψ has finite length. Then Ker ϕ is the total ideal of a CM triple conic W on C of type (ℓ, c) , having Z as the second CM filtrant. Moreover,

$$I_W = \operatorname{Ker} \phi = I_C I_Z + j^{-1} \operatorname{Ker}(\tau),$$

where j is the inclusion of $I_Z \otimes S_C$ in $T(m) \oplus T(n)$ and τ is the map corresponding to ψ .

6. Invariants of Triple Conics

Theorem 6.1 (R-). Let W be a quasi-primitive triple conic on C with Z as the second CM filtrant.

(1) If W has type (2a, 2b) then

$$I_W = (I_C I_Z, \alpha x^2 + \beta xq + \gamma q^2 - R(fq - gx)),$$

where a > 0 and b > 2.

- (2) If W has type (2a, 2b+1) then
- $I_W = (I_C I_Z, H_1 R_1 (fq gx), H_2 R_2 (fq gx)),$
- where $a \ge 0$ and $b \ge 1$.
- (3) If W has type (2a + 1, 2b) then
- $I_W = (I_C I_Z, H_1 R(F_1 q G_1 x), H_2 R(F_2 q G_2 x)),$
- where $a \ge -1$ and $b \ge 1$.
- (4) If W has type (2a + 1, 2b + 1) then

$$I_W = (I_C I_Z, H - R_1 (F_1 q - G_1 x) - R_2 (F_2 q - G_2 x)),$$

where $a \ge -1$ and $b \ge 1$

Example 6.2. Let $I_W = (x^3, q)$. Then W is a triple conic in \mathbb{P}^3 . Moreover, W is a complete intersection.

