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1. Multiplicity Structures on Algebraic Curves

Definition 1.1. An algebraic set is the solution set of a sys-
tem of polynomial equations. The coefficients of the polyno-
mials can be taken from R or C, or from any field F.

Definition 1.2. An algebraic curve is a one dimensional al-
gebraic set.

Example 1.3. The solution set of the polynomial equation
x = 0 in R2 is the Y -axis.
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Definition 1.4. Let X ⊂ P3 be a nonsingular connected
curve. A multiplicity structure on X is some curve Y such
that SuppY = SuppX. If Y has no embedded or isolated
points then its multiplicity can be defined to be the integer

mult(Y ) =
deg Y

degX
.

Example 1.5. The solution set of the polynomial equation
x2 = 0 in R2 is a double structure on the Y -axis.
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Example 1.6. Consider the polynomial equation ty−x2 = 0.
For each t 6= 0 we get a parabola in R3. But for t = 0 the
equation becomes x2 = 0, whose solution set is a double
structure on the Y -axis.

II Schemes 

is a morphism of finite type, and if S'----+ Sis any base extension, thenf' :X'----+ S' 
is also a morphism of finite type, where X' = X x s S'. Hence we say the 
property of a morphism f being of finite type is stable under base extension. 
On the other hand, if for example f: X ----+ Sis a morphism of integral schemes, 
the fibres off may be neither irreducible nor reduced. So the property of a 
scheme being integral is not stable under base extension. 

Example 3.3.1. Let k be an algebraically closed field, let 

X = Spec k[x,y,t]/(ty- x2), 

let Y = Spec k[t], and let f: X ----+ Y be the morphism determined by the 
natural homomorphism k[t] ----+ k[x,y,t]/(ty - x2). Then X and Y are 
integral schemes of finite type over k, and f is a surjective morphism. We 
identify the closed points of Y with elements of k. For a E k, a i= 0, the fibre 
Xa is the plane curve ay = x2 in which is an irreducible, reduced curve. 
But for a = 0, the fibre X 0 is the nonreduced scheme given by x2 = 0 in A 2 . 

Thus we have a family (Fig. 7) in which most members are irreducible curves, 
but one is nonreduced. This shows how nonreduced schemes occur naturally 
even if one is primarily interested in varieties. We can say that the nonreduced 
scheme x2 = 0 in A2 is a deformation of the irreducible parabola ay = x2 

as a ----+ 0. 
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Figure 7. An algebraic family of schemes. 

Example 3.3.2. Similarly, if X = Spec k[x,y,t]/(xy - t), we get a family 
whose general member Xa is an irreducible hyperbola xy = a, when a i= 0, 
but whose special member X 0 is the reducible scheme xy = 0 consisting 
of two lines. 

EXERCISES 

3.1. Show that a morphism f:X-> Y is locally of finite type if and only if for every 

open affine subset V = Spec B of Y, f- 1(V) can be covered by open affine subsets 
Ui = Spec Ai, where each Ai is a finitely generated B-algebra. 

90 

A family of smooth parabolas deforms into a double line.

2. Double Conics

Definition 2.1. A conic in P3 is a degree two integral curve.
In other words, every conic in P3 is a nondegenerate plane
section of the quadric cone.

Quadric cone in R3

Let P3 = ProjS, where S = k[x, y, z, w] and k is algebraically
closed. Let C be a conic in P3. Then up to a change of co-
ordinate IC = (x, q), where q = yz − w2.

Theorem 2.2 (R-). Let Z be a double conic on C with arith-
metic genus −1− `, where ` ≥ −1.
(1) If ` is even, say ` = 2a, then

IZ = (I2C , fq − gx),

where f, g are homogeneous polynomials in S of degrees a+1
and a+2 respectively, such that their images f̄ , ḡ in SC form
a regular sequence.
(2) If ` is odd, say ` = 2a+ 1, then

IZ = (I2C , F1q −G1x, F2q −G2x),

where {F1, G1}, {F2, G2} is an admissible pair of sequences
of type I on C such that degFi = a+ 2 and degGi = a+ 3.

Remark 2.3. A double conic Z on C of arithmetic genus
−1− ` is a complete intersection if and only if ` = −4 or −2.

Proposition 2.4 (R-). Let Z be a double conic in P3 of
arithmetic genus −1− `, where ` ≥ −1. Then SZ has projec-
tive dimension 3. In particular, Z is not projectively normal.

Theorem 2.5 (R-). A double conic in P3 is self-linked by
complete intersection curves if and only if char k = 2.

Proposition 2.6 (R-). Let H`
Z be the Hilbert scheme of

double conics in P3 of arithmetic genus −1− `. Then H`
Z is

irreducible of dimesion 2`+ 16.

3. Surfaces containing Double Conics

Theorem 3.1 (R-). Let Z be a double conic on C of arith-
metic genus −1 − `. If Z is contained in some nonsingular
surface F of degree d > 0, then ` = 2d− 6.

Proposition 3.2 (R-). Let Z be a double conic on C of
arithmetic genus −1 − `. If char k = 0 and d � 0 then a
general surface F of degree d containing Z is integral and
normal. Moreover, SingF is a finite set and

| SingF | =

{
2d− `− 6, if ` is even

2d− `− 4, if ` is odd.

Example 3.3. Let ` = 0. Then IZ = (I2C , zq−y2x) defines a
double conic Z on C. Notice, I2C defines a triple structure on
C and the surface zq − y2x = 0, which is nonsingular along
C, cuts out the double conic Z.

Graph of zq − y2x = 0 in R3.

4. Quasi-primitive and Thick Extensions

Definition 4.1. Let X ⊂ P3 be a nonsingular connected
curve and let Y be a multiplicity structure on X.
(1) Y is called a quasi-primitive extension of X if it has em-
bedding dimension two at all but finitely many points.
(2) Y is called the thick extension of X if it has embedding
dimension three at each point. Also in that case IY = I2X .

Remark 4.2. If Y is a multiplicity structure on a nonsingu-
lar connected curve X ⊂ P3 then it is either a quasi-primitive
or a thick extension.

Example 4.3. Let X ⊂ P3 be the line given by IX = (x, y).
Then IY = (x2, xy, y3, y2z − w2x) defines a quasi-primitive
triple line Y on X. On the other hand, I2X = (x2, xy, y2)
defines the thick triple line on X.

5. Structure Theorem of Triple Conics

Theorem 5.1 (R-). Let Z be a double conic on C of type `
with IZ ⊗ SC ⊆ SC [m] ⊕ SC [n]. Let φ : IZ → SC [2` + c] be
the map defined as

φ : IZ → IZ ⊗ SC ⊆ SC [m]⊕ SC [n]
ψ−→ SC [2`+ c],

where c ∈ Z≥0 and Cokerψ has finite length. Then Kerφ is
the total ideal of a CM triple conic W on C of type (`, c),
having Z as the second CM filtrant. Moreover,

IW = Kerφ = ICIZ + j−1 Ker(τ),

where j is the inclusion of IZ ⊗ SC in T (m)⊕ T (n) and τ is
the map corresponding to ψ.

6. Invariants of Triple Conics

Theorem 6.1 (R-). Let W be a quasi-primitive triple conic
on C with Z as the second CM filtrant.

(1) If W has type (2a, 2b) then

IW = (ICIZ , αx
2 + βxq + γq2 −R(fq − gx)),

where a ≥ 0 and b ≥ 2.
(2) If W has type (2a, 2b+ 1) then

IW = (ICIZ , H1 −R1(fq − gx), H2 −R2(fq − gx)),

where a ≥ 0 and b ≥ 1.
(3) If W has type (2a+ 1, 2b) then

IW = (ICIZ , H1 −R(F1q −G1x), H2 −R(F2q −G2x)),

where a ≥ −1 and b ≥ 1.
(4) If W has type (2a+ 1, 2b+ 1) then

IW = (ICIZ , H −R1(F1q −G1x)−R2(F2q −G2x)),

where a ≥ −1 and b ≥ 1

Example 6.2. Let IW = (x3, q). Then W is a triple conic
in P3. Moreover, W is a complete intersection.
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