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Groups
When an object is symmetrical, it may be transformed in a
way that preserves its appearance. If we combine two such
transformations, we end up finding a new symmetry.
A group can be thought of as representing the structure of
the symmetries of an object: it is a set containing all these
transformations, as well as information about what results
from their combination.

Example: D10, the dihedral group of ten elements.
This represents the symmetries of a regular pentagon,
as well as many other five-sided shapes. The group
is generated by two fundamental transformations: M
mirrors the image along the vertical axis and R rotates
it 2π/5 radians.

If we combine these two transformations by rotating
then mirroring, denoted MR, we find a new symmetry.
Through this method we can find them all.

Example: Z, the integers.
Groups can also be infinite. Consider a taut rope
of infinite length, with knots at regular increments.
Its symmetries form this well-known group, with
transformations of moving the rope forward or backward
from knot to knot.

Example: F2, the free group on two generators.
Groups can also be much more abstract. This group
comprises all finite strings of two symbols and those
symbols’ inverses. To conceptualize this as representing
symmetries, one may need to broaden one’s sense of
“objects” and “transformations.”

Cayley graphs
The examples of groups given here have all been
finitely generated : there is a finite list of fundamental
transformations which we can combine to generate all
possible symmetries. This suggests a novel method of
“drawing pictures” of our groups, first considered by Arthur
Cayley in 1878, hence called a Cayley graph.
Our method consists of drawing vertices to represent each of
the symmetries, with edges between them representing the
fundamental transformations. (Different transformations
can be illustrated using different colors) Any path along these
edges starting at the point we call e represents a combination
of transformations that will yield the symmetry at the end.

Example: Our rope with knots is just a 3D form of the
Cayley graph of Z.

Example: Using M & R gives us the Cayley graph of D10

as on the left. However, Cayley graphs can depend on the
choice of generators, as depicted on the right where we
instead use M & MR to generate D10.

Example: We can also go the other way and create groups
from graphs. Symmetries of the graph replace e with
another vertex and rearrange the rest so that it looks the
same, colors and all. Thus we can fulfill the symmetries
promised by F2.

C*-algebras
C*-algebras generalize two mathematical structures,
relating them to the broader subjects of noncommutative
geometry and operator algebras:

� C(X,C), the complex-valued continuous functions
on a compact space. From topology. Can
represent the temperature at every point of a
room. Uses the uniform norm, which measures
the greatest magnitude a function attains. Is not
finite-dimensional.

� Mn(C), the n × n matrices with complex-valued
entries. From linear algebra. Represents the linear
operators on an n-dimensional vector space. Uses
the operator norm, which can be measured from
eigenvalues. Is not commutative.

Group actions
The relationships between the symmetries in a group can
be expressed onto other objects—including C*-algebras—via
what is known as a group action.

Example: D10 acts on the unit circle T := {e2πix | x ∈ R}.
This action perfectly mimics the symmetries of a
pentagon: M mirrors the circle, and R rotates it.

An action on a compact space induces an action on the
C*-algebra of continuous functions by shifting to the
argument, so we have that D10 acts on C(T,C) via:

(Mf)(e2πix) = f(e−2πix), (Rf)(e2πix) = f(e2πi(x+1/5)).

Example: D10 acts on the 5D complex vector space C5.
This representation permutes a vector’s coordinates in the
same way the pentagon’s corners are permuted:
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Thus the transformations become matrices:

M =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

, R =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

.
Once again, this induces an action on M5(C) via inner
automorphisms, where we multiply matrices by the group
element on the left and its inverse on the right.

Constructions and crossed products
Given a C*-algebra A, there are several ways to construct
new ones, the most basic being C(X,A) & Mn(A), which
are respectively just continuous functions/matrices that have
values/entries in A instead of C.

If A is acted on by a group Γ, it forms a dynamical
system from which we construct a new C*-algebra known
as the crossed product. In truth, different norms can
produce many different crossed products built from the
same dynamical system. However, only two are commonly
encountered: the “reduced” crossed product A or Γ, which
is the most naturally-occurring form; and the “full” crossed
product Ao Γ, which is the largest of them all.

C*-algebras of URS’s
Gábor Elek introduced a new way of constructing a
C*-algebra C∗r (U) from a Schreier graph (a generalization of
a Cayley graph) of a Uniformly Recurrent Subgroup (URS)
U . He used matrices with entries indexed by the graph’s
vertices, with the requirement that entries be similar when
the subgraphs containing the corresponding vertices look
similar. To illustrate, the highlighted subgraphs below are
isomorphic radius-one balls around the golden vertices:

New results
Theorem 1: C∗r (U) admits a faithful amenable trace if and

only if U is coamenable.

Theorem 2: The C*-algebra of a URS is a crossed product
under a certain norm ‖ · ‖O:

C∗r (U) = C(U) oO Γ.

This crossed product is not, in general, the full or reduced
crossed product.


