
• We express the Hamiltonian and the coupled cluster operator in diagrammatic form and by deriving 
diagrammatic rules we can effectively calculate the necessary terms in our equations 

• As an example, the following diagrams illustrate how two operators (top) can be connected in two ways, 
giving rise to two required terms in the EOM-CC operating equations.

• In the case of a quadratic perturbation we can show that the exact solution can be obtained by only 
including double excitations in the cluster operator. 

• The resulting non-linear equations for the amplitudes are solved iteratively and a simple expression is found 
for the perturbed ground state energy.

• In the case of a quartic perturbation there is no restriction on the excitation level of the cluster operator and 
it has to be truncated at some level to give a finite number of coupled equations.

• Quantum mechanical oscillations of a many-body system about a local potential minimum can in a first 
approximation be modeled by a set of harmonic oscillators about a local potential minimum. In this 
approximation the interaction potential of the system only retaining the lowest non-zero term in a Taylor 
expansion of the potential energy of the system around an equilibrium point, i.e. the term

• The motion decouples into a system of independent quantum oscillators which can be compactly expressed 
in terms of bosonic creation and annihilation operators which create and annihilate vibrational quanta of 
modes with frequency !" respectively and the Hamiltonian takes on a very simple form

• For a more detailed understanding it is typically necessary to include higher order terms in the Taylor 
expansion. In the quartic approximation, terms up to the fourth derivative of the potential energy are 
retained

• The aim of our project is to develop a method to solve this anharmonic problem using coupled cluster 
techniques where terms beyond the harmonic approximation are treated as a perturbation. 

• Here we present the first steps towards a systematic solution of ground and excited states of such a system 
using coupled cluster techniques applied to the resulting time-independent Schrödinger equation.

• In order to illustrate our approach, we will limit this presentation to a set of Harmonic oscillators perturbed 
by a quadratic perturbation. Everything in our derivation can be extended to include higher order, cubic, 
quartic etc., terms in a systematic way. Using our creation and annihilation operators we can express a 
general quadratic perturbation by the following perturbing potential

• Our goal is to solve the resulting time-independent Schrödinger equation for N oscillators

• In the EOM-CC approach we first express the ground state in terms of a coupled cluster expansion so that 
for the ground state the Schrödinger equation reads

• In general, the cluster operator consists of all possible excitation of the system

• Via the use of the Baker-Campbell-Hausdorff formula, we can define an effective Hamiltonian (H-bar)

• Where the “c” indicates that only contracted (or connected) terms are retained.
• The coupled cluster amplitudes can now be obtained from a set of coupled non-linear equations resulting 

from projections of the Schrödinger equation

• And the ground state energy is obtained from
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• In the EOM-CC method, excited states are obtained by diagonalizing the effective Hamiltonian (non-
hermitean) matrix in the basis of the unperturbed harmonic oscillator states. Symbolically we can represent 
this by blocks involving the ground, first, second, etc. excited states

• In the case of quadratic perturbation, this matrix simplifies and the eigenvalues can be written off directly 
from the diagonal elements of the matrix!

• When considering cubic, quartic… perturbations we will have to truncate the space in order to generate a 
finite matrix which to diagonalize.

• We note that the result above is directly linked to a Bogoliubov transformation of our original creation and 
annihilation operators resulting in the ability to express the perturbed Hamiltonian in a new set of harmonic 
oscillators
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Introduction

Many systems in physics can be modeled by harmonic oscillators. For instance, 
a mass attached to a spring will oscillate in a way which is well described by this 
model as long as the amplitude of vibration is small. For larger amplitudes the 
vibration becomes anharmonic as the restoring force of the spring become non-
linear with respect to the displacement of the mass.
This project explores the analogue quantum mechanical system consisting of a 
system of interacting particles subjected to forces which give rise to anharmonic
oscillatory motion of the particles.

Coupled Cluster Approach (CC)

Diagrammatics and Example of Operating Equations
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Conclusions and Future Work

We have presented the results of our first steps towards calculating ground and excited state energies of a set 
of coupled oscillators using coupled cluster techniques. The process presented was illustrated for a simple 
quadratic perturbation, to which the exact solution is known. Our next steps involve implementing the method 
for the case of cubic and quartic perturbations and benchmarking the method with respect to existing 
calculations. Future work will include the application of the method to realistic physical systems, e.g. the case 
of anharmonic molecular vibrations where the necessary potential parameters can be obtained.

Quadratic Perturbation of Single Oscillator

• The graphs below show the output from our Python code for the case of a quadratic perturbation of a 
single harmonic oscillator.

• The top graphs shows the iterative convergence of the single cluster amplitude and the corresponding 
convergence of the ground state energy. In this simple case the convergence is straightforward 
something which is not guaranteed in more general cases.

• Given the form of our EOM effective Hamiltonian matrix we would expect to see the appearance of a 
set of equally spaced eigenvalues reflecting the perturbed frequency as the coupled cluster amplitude 
converges. This is illustrated in the third graph.

• Finally, the bottom graph shows the behavior of the eigenvalues of the effective Hamiltonian as a 
function of iteration step, illustrating the fact that we are dealing with a non-hermitean matrix, 
resulting in the appearance of pairs of complex eigenvalues, which gradually move to the real axis as 
the ground state coupled cluster amplitude converges. In this particular case we are guaranteed to get 
real eigenvalues since our method in principle provides the exact solution for the ground state as well 
for any truncation level of the space used in the diagonalization of the effective Hamiltonian.
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