

Modeling polymerase inhibitor treatment of RSV Rashmi Jha, Hana Dobrovolny Department of Physics and Astronomy, Texas Christian University

Parameter Estimates		
Parameter	Model 1	Model 2
ε _{μαξ}	1.91	1.47
IC ₅₀ (nM)	18.0	13.7
β (/day)	2.56×10^{-6}	1.96×10^{-6}
p (/day)	1.23×10^{10}	$1.44 imes 10^{16}$
c (/day)	0.848	1.20
δ (/dav)	7630	6.50× 10 ⁹
SSR	3.7	6.7
 A in Nodel 1, the drug decrease A in Model 2, the drug e if the virus production Both models fit the data the data. Model 1 resulted in a set to the wirk of the models is the models in the data. A model 1 resulted in a set to the models and the models are the models are	first was applied to p, m es the virus infection rate ffect was applied to p, m rate is inhibited. ta with a fairly small SSR, slightly better SSR. shad inconsistencies or e han 1. of δ are also larger than p models are in good agree	eaning the model acts , indicating a good fit t errors, since the value o previous estimates. ement and are
 Within the extracted of inaccurate due to data Viral titer measurement humidity, and freeze-t Minimization algorithm so re-fitting with a diff The viral dynamics model the effect of PC 	lata points, y-values less a-collecting limitations. Ints are known to be dependent haw cycles. Ins do not necessarily find ferent initial guess might del used here might be t 786.	than 1.5 may be endent on temperature d the global minimum, lead to better results. oo simple to properly
PC786 may be an effect previously published data action of this drug. Alth inconsistent and inaccura were unrealistic and un results indicate that the r is one that assumes a red	Conclusion tive treatment for RSV. in an attempt to learn hough the models fit the to ugh the models fit the te in the ε_{max} values use preasonable values. Ho most appropriate mather uction in infection rate.	We created models now to better model the data well, they we ed to fit the data, which wever, our preliminal matical model for PC78

