

Using an agent-based model to explore the impact of inoculum dose and transmission mode on viral infection

Baylor Fain^{*}, Hana M. Dobrovolny ^{*}

*Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA

Motivation

- A virus spreads through a body in two known ways, cell free transmission and cell to cell transmission.
 - In cell free transmission, cells produce and release viruses that diffuse throughout the body which may cause any cell that the virus touches to become infected.

• In cell to cell transmission, virus spreads through intercellular transfer.

- In cell to cell transmission, virus spreads through intercellular transfer.
- The two transmission modes allow viruses to spread at different speeds.
- Cell to cell transmission also protects the virus from dangers outside the cell such as antivirals and components of the immune response.
- We would like to understand how different transmission modes alter the time course of the disease.

Our Approach

- We will construct a hybrid agent-based and partial differential equation (PDE) model to simulate the spread of virus.
- An agent-based model represents each cell independently and allows us to examine the collective behavior.

Virus Spread

- The virus produced by free cell transmission diffuses over the top of the cell layer.
- Virus spreads according to the following partial differential equation,

$$\frac{\partial V}{\partial t} = D\nabla^2 V + pI - cV$$

Modeling Cell States

The cells can be in one of four states.

- Green Healthy cells
- Blue Infected cells not producing virus (Eclipse cells)
- Red Virus-producing infected cells
- Black Dead cells
- Cells become infected either from virus above them or from virus transferred from neighboring cells.
- Cells transition from eclipse to infectious and infectious to dead after periods of time drawn from a gamma distribution.

Modeling Infections	Vira
• A million cells in a hexagonal grid were simulated.	A simu and a v
• For the images below a Multiplicity of Infec- tion (MOI) of 10^{-3} was used. MOI determines the initial amount of virus.	
• We compared infections using only cell-free transmission and only cell-to-cell transmission.	
• Below the first 4 days for cell-to-cell (left) and cell-free (right) transmission are shown.	
Day 0:	
	We use to asses fection
Day 2:	Peal
	eak Virus
Day 4:	
	At low lead to
Day 6:	transm dle MC
	Tim
Day 8.	(hr)
	Time of Peak
	Time o

al Time Course

ulation is performed for a number of MOIs virus vs. time graph is recorded for each.

different features of the viral time course ess how transmission mode changes the in-

and high MOIs, both transmission modes o similar peak viral titers, but cell-free nission has higher viral peaks at the mid-OIs.

of peak differs at low MOIs.

Cell to cell transmission has a lower growth rate particularly at low MOI.

Conclusions

- In general, the infection spreads quicker with cell-free transmission.
- For high MOI, there is little difference in infections transmitted by either mode.
- At lower MOI, there are distinct dif-ferences in several measures of infection.

Future Work

- Simulate infections with both modes of transmission.
- Examine the effect of antivirals.
- Incorporate cell regeneration.