
Utilizing Bogoliubov Transformations to Improve Accuracy in 
Computing Eigenvalues of Perturbed Harmonic Oscillators

• Noting that the above method is approximate, we can now utilize other techniques to greatly increase the 
accuracy of our result.  Allow us, for example, to define a new set of creation and annihilation operators.  

• Utilizing the commutation relation and annihilation of the new ground state, we can show that the 
expansion coefficients defining the transformed operators are as follows for a single oscillator.

• We can rewrite a general Hamiltonian which depends on the original operators in terms of the newly 
defined ones.  This will give us a more accurate Hamiltonian to analyze using the coupled cluster method.

• Repeated Bogoliubov transformations of the above zeroth-order Hamiltonian will give us more and more 
accurate starting Hamiltonians.  This is done iteratively via computer code.

• In order to connect these transformations to the coupled cluster approach, we simply need to use the 
proper initial conditions.

• We can now express the Hamiltonian and the coupled cluster operator in diagrammatic form.  By deriving 
diagrammatic rules, we can effectively calculate the necessary terms in our equations. 

• As an example, the following diagrams illustrate how two operators can be connected in different ways, 
giving rise to two required terms in the EOM-CC operating equations.

• The resulting non-linear equations for the amplitudes are solved iteratively and a simple expression is found 
for the perturbed ground state energy.  As the cluster operator includes infinitely many excitations, we 
require truncation at some point in order to solve the set of equations.

• For example, the ground state energy for a quartic perturbation including singly to quadruply excited 
amplitudes (T1, T2, T3, T4) is as follows.

• Each individual matrix element in !𝐻 can be calculated from similar equations, consisting of all possible 
diagrams with a certain string of operators.

• Quantum mechanical oscillations of a many-body system about a local potential minimum can in a first 
approximation be modeled by a set of harmonic oscillators about a local potential minimum. In this 
approximation the interaction potential of the system only retaining the lowest non-zero term in a Taylor 
expansion of the potential energy of the system around an equilibrium point, i.e. the term

• The motion decouples into a system of independent quantum oscillators which can be compactly expressed 
in terms of bosonic creation and annihilation operators which create and annihilate vibrational quanta of 
modes with frequency 𝜔! respectively and the Hamiltonian takes on a very simple form

• For a more detailed understanding it is typically necessary to include higher order terms in the Taylor 
expansion. In the quartic approximation, terms up to the fourth derivative of the potential energy are 
retained

• The aim of our project is to develop a method to solve this anharmonic problem using coupled cluster 
techniques where terms beyond the harmonic approximation are treated as a perturbation. 

• Here we present the first steps towards a systematic solution of ground and excited states of such a system 
using coupled cluster techniques applied to the resulting time-independent Schrödinger equation.
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Introduction

Many systems in physics can be modeled using harmonic oscillators, at a low 
approximation. Oscillations of larger amplitudes require higher-order 
approximations in order to accurately describe the motion of the system, so 
further investigation of anharmonicity becomes necessary. This project explores 
the analogue quantum mechanical system consisting of interacting particles 
subjected to forces which give rise to anharmonic oscillatory motion of the 
particles. In our case, this is done making use of diagrammatic, iterative, and 
computational techniques. Methods of improving accuracy and convergence for 
different energetic states are also developed and discussed. 

Equations of Motion-Coupled Cluster (EoM-CC) Approach

Diagrammatics

• We will first discuss the method we use in order to find the eigenvalues of this perturbed system.  
Everything in our derivation can be extended to include higher order terms if needed, though these terms 
would require extreme amounts of computational power to obtain in practice.  The perturbing potential is 
assumed to be written in the following “normal ordered” form.

• Our goal is to solve the resulting time-independent Schrödinger equation for N oscillators.

• This is done by introducing a “cluster operator”, consisting of all possible excitations of the system.

• With the new cluster operator, the Schrödinger equation for the perturbed ground state reads:

• Via the use of the Baker-Campbell-Hausdorff formula, we can define an effective Hamiltonian.

• Where the “C” subscript indicates that only contracted (or connected) terms are retained.
• The ground state energy and coupled cluster amplitudes can now be obtained from a set of coupled non-

linear equations resulting from projections of the Schrödinger equation.

• In the EOM-CC method, excited states are obtained by diagonalizing the effective Hamiltonian matrix (which 
we note is no longer hermitean) in the basis of the unperturbed harmonic oscillator states. Symbolically, we 
can represent this by blocks involving the ground, first, second, etc. excited states.
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Conclusions and Future Work

We have presented example results for calculations of ground and excited state energies of a set of coupled 
oscillators using coupled cluster techniques. The process presented was illustrated for a quartic perturbation, 
for which an exact answer does not exist. Our next steps involve implementing the method in order to get 
numerical results for the case of multiple oscillators. Future work will include the application of the method to 
realistic physical systems, e.g. the case of anharmonic molecular vibrations where the necessary potential 
parameters can be obtained.

Quartic Perturbation of Single Oscillator

• The graphs below show the output from our Python code for the case of a single harmonic oscillator 
under quartic perturbation.

• The top graph – Examples of how the EoM-CC method compares to other methods of calculation for a 
pure quartic perturbation.  Compared methods include numerical integration (which is exact) and 
different levels of perturbation theory (which are divergent for a quartic perturbation).

• The middle and bottom graphs – Comparison of results for excited state energies, calculated at three 
different stages (T=0, EoM-CC, and the fully converged result via Bogoliubov transformations) using 5x5 
and 20x20 matrices.
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