The Role of Graphene-Oxide in Stabilizing the Structure of the High-Temperature y-Fe Phase A. Valimukhametova^{1,2}, A. Khannanov², A.M. Dimiev², F.G. Vagizov²

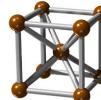
¹Department of Physics and Astronomy, Texas Christian University ²Kazan Federal University, Kazan, Russia

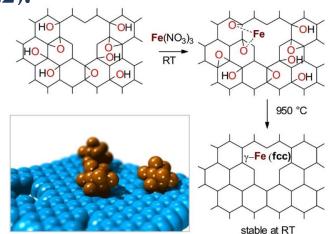
ABSTRACT

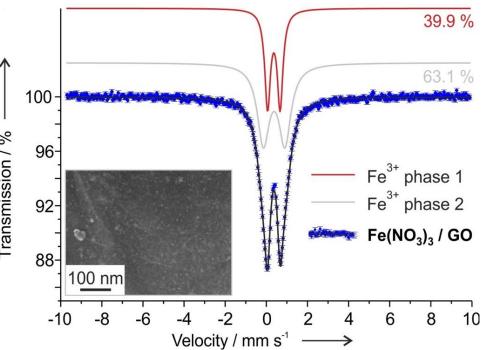
We describe formation of γ -iron nanoparticles with the face-centered cubic structure. In bulk the γ -iron phase is formed above 917°C and transforms into the thermodynamically favored α -phase upon cooling. In present work we demonstrate the unexpected roomtemperature stability of the γ -phase of iron in the form of nanoparticles on graphene oxide support with diameters of up to 200 nm. X-Ray diffraction and Mössbauer spectroscopy undoubtedly confirm the stability of the γ -phase at room temperature.

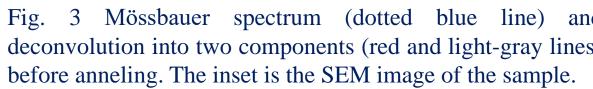
INTRODUCTION

- Metal nanoparticles (NPs) on a structural support have gained significant attention in recent years as novel systems for new generations of catalysts, electrode materials in the energy conversion/storage devices. [1-2]
- Graphene oxide (GO) is most suitable for the growth of metal nanoparticles because it serves as a
- Template
- Stabilizer
- Reducing agent [1-3]
- Among other metals, iron attracts constant attention due to its low cost and peculiar electro-magnetic and catalytic properties. Iron allotropes possess either the body-centered cubic (bcc) or the face-centered cubic (fcc) structure (Fig. 1). Up to 917 °C, iron exists in its α -form (α -Fe). At 917°C, bcc transforms into the fcc lattice, and this allotrope is termed as γ -iron (γ -Fe) (austenite).

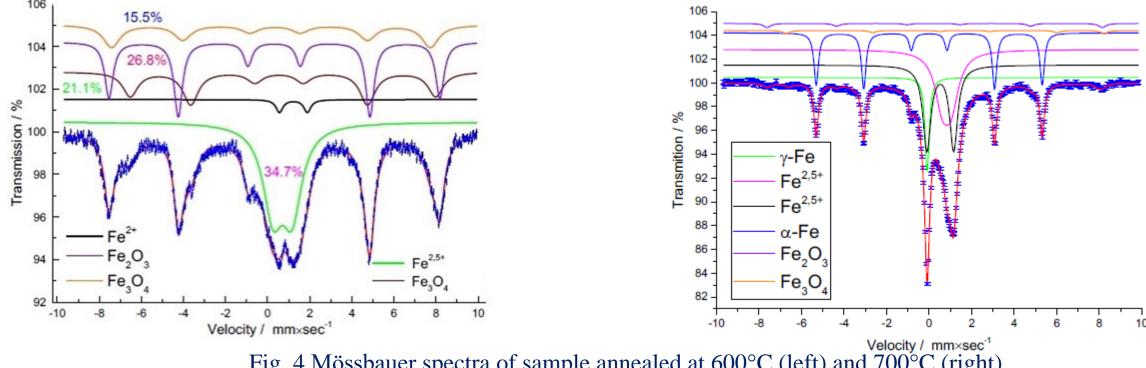


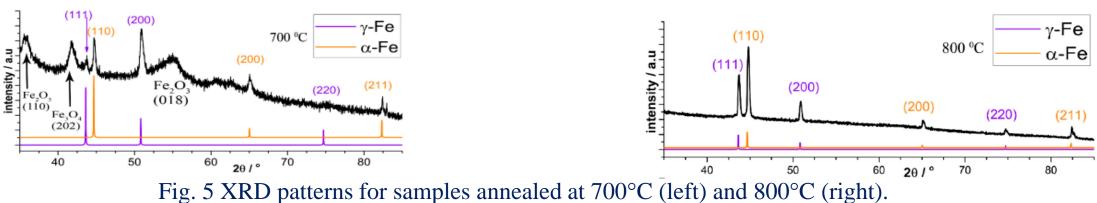

Fig. 1 Allotropes of iron: a) α -Fe and b) γ -Fe

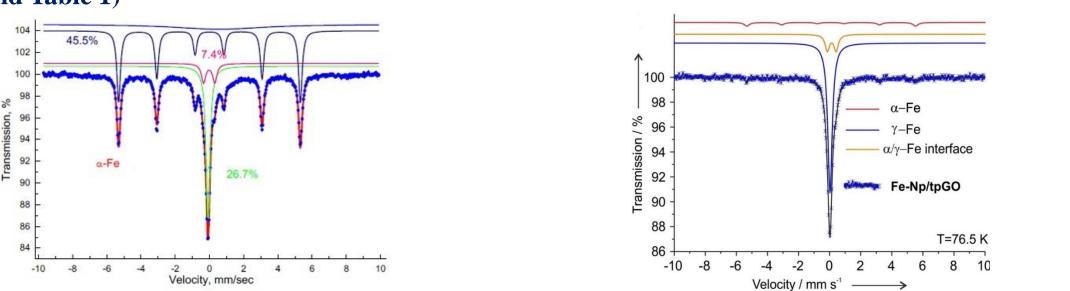

Here, we show the stabilization of the γ -Fe allotrope NPs at room temperature on thermally processed GO. In previous works [4-6] thermal annealing of the variety of iron containing compounds in presence of GO yields mostly iron oxides and iron carbide. Only few studies report on the formation of α -Fe along with iron oxides. [7-8].


MATERIALS

 γ -Fe NPs were synthesized in a two-step procedure: first, Fe³⁺ is complexed with oxo-functional groups present on the surface of GO, and second, γ -Fe NPs are formed upon thermal annealing. Metal reduction was carried out by thermal annealing (Fig.2).


Fig. 2 Formation mechanism of iron nanoparticles stabilized on thermallyprocessed graphene oxide [9]





Second step: formation of γ -Fe nanoparticles upon thermal annealing.

(Fig. 6 and Table 1)

RESULTS

First step: liquid phase reaction to produce Fe³⁺/GO nanocomposite: Fe³⁺ reacts with oxo-functional groups present on the surface of GO. Mössbauer spectrum of this sample (Fig. 3).

> 39.9 % 63.1 %

Table 1. The content of different types of iron in the samples annealed at different temperatures; based on the Mössbauer spectroscopy data.[a]

100						
44.5	40.0		15.5			
34.7	1.9		63.4			
31.2		30.1	4.7	25.3		8.7
			4.4	52.1	22.5	19.5
				35.0	15.6	49.4
				11.8	22.1	66.1
	34.7 31.2	34.7 1.9 31.2	34.7 1.9	34.7 1.9 63.4 31.2 30.1 4.7 4.4	34.7 1.9 63.4 31.2 30.1 4.7 25.3 4.4 52.1 35.0 11.8 11.8	34.7 1.9 63.4 31.2 30.1 4.7 25.3 4.4 52.1 22.5 35.0 15.6 11.8 22.1

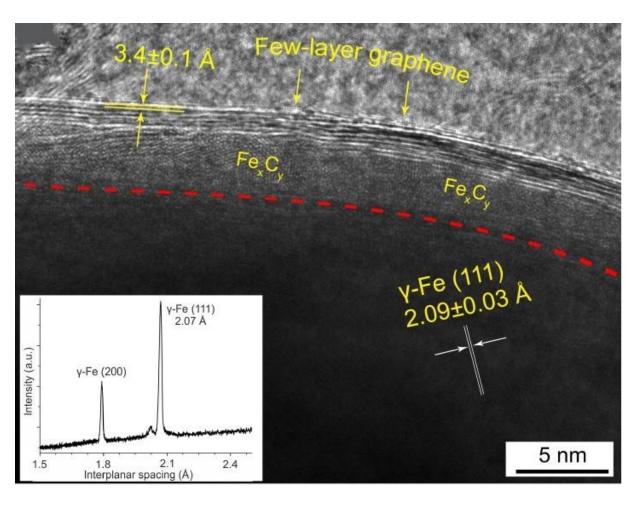

• The γ-Fe nanoparticles begin to form already at a temperature of 700°C. (Fig. 4 - 5)

Fig. 4 Mössbauer spectra of sample annealed at 600°C (left) and 700°C (right).

• Iron oxides are reduced to metallic iron by annealing at temperatures above 800°C. (Fig. 5 -6)

• The maximum amount of γ -Fe nanoparticles is obtained by annealing at a temperature of 950°C.

Fig. 6 Mössbauer spectrum (left) of sample annealed at 800°C and acquired at 76.5 K (right) of sample annealed at 950°C.

- room temperature.
- formed γ -Fe nanoparticles.
- 700°C temperature.
- above 800°C.

- Chem. Int. Ed. 2011, 50, 10236.
- 2541
- Sci. Rep. 2015, 5, 9298.
- de Jong, K. P. Science 2012, 335, 835.
- J. Mater. Res. 1993, 8, 1666.
- Phys. 2017, 191, 75.
- 2018, 140, 29, 9051

Fig. 7 TEM image of sample annealing at 950°C

CONCLUSIONS

• The using of graphene oxide (GO) allows the synthesis of γ -Fe nanoparticles, which are stable at

• GO plays the role of the nucleating site, the reducing agent, the carbon source, and the stabilizer for the

• X-ray and Mossbauer measurements have established that the γ -Fe nanoparticles begin to form already at

• The iron oxides formed during the synthesis can be reduced to metallic iron by annealing at temperatures

• The maximum amount of γ -Fe nanoparticles is obtained by annealing at 950°C temperature.

REFERENCES

[1] Gao, Y.; Ma, D.; Hu, G.; Zhai, P.; Bao, X.; Zhu, B.; Zhang, B.; Su, D. S. Angew.

[2] Kou, R.; Shao, Y.; Mei, D.; Nie, Z.; Wang, D.; Wang, C.; Viswanathan, V. V.; Park, S.; Aksay, I. A.; Lin, Y.; Wang, Y.; Liu, J. J. Am. Chem. Soc. 2011, 133,

[3] Tucek, J.; Sofer, Z.; Bousa, D.; Pumera, M.; Hola, K.; Mala, A.; Polakova, K.; Havrdova, M.; Cepe, K.; Tomanec, O.; Zboril, R. Nat. Commun. 2016, 7, 12879. [4] Zhang, L.; Yu, X.; Hu, H.; Li, Y.; Wu, M.; Wang, Z.; Li, G.; Sun, Z.; Chen, C.

[5] Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.;

[6] Bi, X.-X.; Ganguly, B.; Huffman, G. P.; Huggins, F. E.; Endo, M.; Eklund, P. C.

[7] Guo, Y.; Zeng, Z.; Li, Y.; Huang, Z.; Cui, Y. Catal. Today 2018, 307, 12. [8] Awadallah, A. E.; Aboul-Enein, A. A.; Kandil, U. F.; Taha, M. R. Mater. Chem.

[9] A. A. Khannanov, A. G. Kiiamov, A. R. Valimukhametova, D.A. Tayurskii, F.Bormert, U.Kaiser, S.Eigler, F. G. Vagizov, A. M. Dimiev. J. Am. Chem. Soc.