

Antibiotic Resistance on the Rise

Why Zinc Oxide (ZnO)?

- Known antimicrobial activity
- Low toxicity to mammalian cells
- Physical and chemical properties can be manipulated

Experimental Methods – Particle Size

Growth Inhibition with Small Particles

Commercial Particles from Sigma-Aldrich

Growth Inhibition with Large Particles

Synthesized by John Reeks

Growth Inhibition with Large Particles

Future Directions

Acknowledgments

Dr. McGillivray's lab

- All my fellow lab members: Alex, Bella, Lauren, and Vuong
- Dr. Shauna McGillivray

Department of Physics and Astronomy collaborators

- John Reeks
- Dr. Yuri Strzhemechny

This project was funded by The Science & Engineering Research Center (SERC) grant

Questions?

References

- CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019.
- Sirelkhatim, A. et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. *Nanomicro Lett* **7**, 219-242 (2015).
- Slavin, Y. N., Asnis, J., Häfeli, U.O. & Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. *Journal of nanobiotechnology* **15**, 65 (2017).
- Lallo da Silva, B. et al. Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview. *Int J Nanomedicine* **14**, 9395-9410 (2019).
- Raghupathi, K. R., Koodali, R. T. & Manna, A. C. Size-dependent bacterial growth inhibition and mechani