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Measuring the Strength of AlphaGo(Zero)
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. Continuing from our first poster, “Exposing AlphaGo(Zero)’s . 1Itn |::arallel tc;ta figyrte tby \;ra]tn der We(;f et.fef[lr.], we fou.nd r’[]Ijar’: the  Our experiments confirm that AIphaGo(Zero_) type agents do « We pro_vided set game positions (puzzles) to the agent to
Weaknesses”, we now present our initial findings in Irst move often dictates the remainaer of the game, whichever not play optimally. Instead, they play to maximize win rate. determine the percentage of accuracy between our

measurlng the Strength Of an AlphaGO(ZerO) agent COlor plays In the Center IS Ilkely tO win. Experiment 5: Number of Moves vs. Number of Games Following Optimal Play agen’[’S mMoves and the Optlma| ones.
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» |Important concepts to recall include: o00, 90.4%
- Go: a zero-sum adversarial board game for 2 players 80%
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where Black plays first; ;g; .
- Goal: secure as much board space as possible; oo,
- Komi: the compensation added to White’s final score to 40%

compensate for going second. 30%
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 We expect to see that the agent plays too aggressively when o 7 1.3%
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losing and too consecutively when winning.

First Move
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-  On a 7x7 board, early moves trend to the center as the number
Openlng MOVQS of generations grow; first move approaches the center square,
while the next move approaches cardinally adjacent squares.

Observe that after only twenty moves, none of the agents
played a game following optimal play.
« Qur agent is able to find, as verified by “Solving Go On Small
Boards,” an optimal line of play. At the eleventh move, our agent First Move
plays an equally optimal move — here, Black wins either way. o —

» Based on solving puzzles whose solutions are known, we
aim to analyze the extent to which the agent does or does
not follow optimal lines of play. -

» With a larger sample of games, we see that further into a TargetEd Tralnlng
game, the agent strays further from optimal lines of play.
This is indicative of the deficiency in the algorithm itself, as
we exposed in our work.

Puzzle Number vs. Number of Generations Solving the Puzzle

 When the agent is unable to play optimally, we attempted to
enhance the agent’s performance by modifying the agent’s
tabula rasa approach to learning by inserting set game
Experiment 6: Number of Moves vs. Number of Games Following Optimal Play - . . . . T .
positions into the training process without providing solutions.
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- (a) Self-play-trained agent. (b) Target-trained agent.
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Design a more precise and robust evaluation system.
Find methods to enhance the performance of our playing agent.
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