Transcriptional Regulation as a Conserved Function of BRCA1/ BARD1 in Caenorhabditis elegans

Thu Uyen Nguyen, Ishor Thapa, Marlo K. Sellin Jeffries, and Mikaela D. Stewart. Texas Christian University, Fort Worth, TX

Introduction

BRCA1 contributes to genome stability in humans

Above: BRCA1 prevents the onset of tumorigenesis by heterodimerizing with BARD1 to silence cytochrome P450 enzymes. By preventing estrogen from metabolizing into free radicals, BRCA1 and BARD1 help prevent free-radical-induced DNA damage.

C. elegans as a model organism for BRCA1/BARD1 studies

Above: *C. elegans* may serve as a model organism for studying the many functions of BRCA1 and BARD1. It could allow for assessment of genetic risk due to inherited mutations.

Challenge of assessing of DNA damage in *C. elegans*

DNA damage found in humans' estrogen-responsive tissues

Potential DNA damage in *C. elegans*?

Above: Without epithelial breast tissues, the ovaries and their functions remain a viable target for studying the impact of DNA damage in *C. elegans* due to estrogen exposure.

Objectives

- Analyze differences in the expression of *cyp-13A* gene subfamily between wild-type and defective BRC-1/BRD-1 C. elegans strains.
- Determine the impact of estrogen exposure on *C. elegans'* reproductive potential.

Methods

<i>C. elegans</i> ortholog
cyp-13A
brc-1
brd-1

Above: The population growth of each strain is synchronized to the fourth larval (L4) stage. RNA is extracted from the tissues and reverse transcribed to cDNA. Levels of expressed *cyp* genes are detected via qPCR.

Estrogen exposure assay

Above: C. elegans are cultured on nematode growth medium (NGM) agar. Estrogen is mixed with *E. coli* OP50 for exposure. A single *C. elegans* from each strain at the fourth larval (L4) stage is transferred to each plate and let grow at 20°C. The population of each plate is monitored and counted over four days.

Results

BRCA1- mediated transcriptional regulation is conserved.

CYP-13A2 CYP-13A4 CYP-13A5 CYP-13A6 CYP-13A7 CYP-13A8 CYP-13A10 CYP-13A11 CYP-13A12

Above: $\Delta brc-1$ and $\Delta brd-1$ strains showed significant upregulation of cyp-13A genes. Data are normalized to the reference gene, *tba-1*, and presented relative to wild-type.

Gene expression analysis

C. elegans population measured daily

200 180 160 140 120 **J** 100

Above: Number of progeny on day four. Mean difference between wild-type C. elegans exposed to estrogen and not exposed to estrogen is statistically significant. This difference is not observed for $\Delta brd-1$ and $\Delta brc-1$ strains. A difference in fecundity between wild-type and $\Delta brc-1$ was noted in the absence of estrogen.

Conclusions and Future Directions

damage as measured by fecundity.

2004;14(1):33-39. 2021;vol. 9. 1321.

Results

Fecundity measurement suggests estrogen-induced DNA damage is not increased in the absence of *brd-1* and *brc-1*.

Above: Mean number of progeny of each strain over four days. Parent C. elegans is either exposed or not exposed to estrogen.

• BRC-1 and BRD-1 regulate the expression of *cyp-13A* genes in *C. elegans*.

 \succ C. elegans is a viable model organism to explore BRCA1 biochemical functions.

 \succ C. elegans shows the potential for testing human BRCA1 mutations.

• Functional BRC-1 and BRD-1 do not protect *C. elegans* from estrogen-induced DNA

 \succ Measure reactive oxygen species directly using fluorescence-based assays. \succ Use comet assay to directly quantify DNA damage.

 \succ Monitor alternate biomarkers over generations.

References

Boulton SJ, Martin JS, Polanowska J, Hill DE, Gartner A, Vidal M. Curr Biol.

Li, Qianyan, and JoAnne Engebrecht. *Frontiers in Cell and Developmental Biology*.

Savage KI, Matchett KB, Barros EM, et al. *Cancer Res.* 2014;74(10):2773-2784. Stewart MD, Zelin E, Dhall A, et al. Proc Natl Acad Sci U S A. 2018;115(6):1316-

Zhang Y, Chen D, Smith MA, Zhang B, Pan X. *PLoS One*. 2012;7(3).