Evaluating the interaction between BRCA1 and estrogen receptor alpha

Introduction

BRCA1 mediates ERα transcriptional activity

Above: Estrogen receptor alpha (ER α) is a nuclear receptor, meaning that it is a protein whose job is to bind to estrogen responsive elements on DNA and induce transcription of estrogen-responsive genes. Breast cancer type 1 susceptibility protein (BRCA1) is a tumor suppressor protein found throughout all our cells and is essential in many cellular functions, including DNA repair, initiation of apoptosis, and regulation of gene

to physically interact

above by the colors blue and yellow, respectively [3]. The protein constructs used in this research consist only of the amino acids making up these two regions of interest.

Objectives

• Using in vitro methods, document the molecular details of the estrogen receptor region of BRCA1 binding to estrogen receptor alpha, both in the presence and absence of estrogen. • Determine biochemical and biophysical methods conducive to studying this interaction.

Molly C. Sindelar*, Lisa Tuttle** and Mikaela D. Stewart*. *Texas Christian University, Fort Worth, TX; **University of Washington, Biochemistry Department, Seattle, WA

ERα and BRCA1 interact *in vitro*

Above: Gel electrophoresis results of a pull-down assay confirming qualitative binding between the shortened BRCA1 and ERα constructs studied.

Left: The greatest volume of BRCA1 was found after elution with ERa LBD present in the resin.

Right: Control pull down; The greatest volume of BRCA1 was found in wash 2 without ER α in the resin.

Estrogen impacts ERα-BRCA1 interaction

Nuclear magnetic resonance (NMR) spectra of BRCA1 and BRCA1 + ERα (left): The appearance of new peaks in BRCA1 spectra with the addition of ER α to the sample (denoted with an asterisk, *) indicates an interaction between the two protein constructs. NMR spectra of BRCA1 and BRCA1 + ER α + E₂ (right): Additional visible chemical shifts in BRCA1 amino acids in the presence of both estrogen (E_2) and ER α (denoted with an arrow, \rightarrow). The shift in chemical environment of certain peaks in the presence of ER α and E_2 implies an improved interaction compared to the addition of ER α only.

Addition of estrogen decreases NMR peak intensity

Comparison of NMR of BRCA1 (blue) to the sample including ERa (yellow) and the sample including ER α and E₂ (pink).

Left: Addition of ER α only slightly alters peak distribution and intensity, while the presence of E₂ leads to more significant chemical shifts and a decrease in peak intensity, indicated by an arrow (\rightarrow) and pound sign (#), respectively.

Right: Quantification of the average peak intensity of each sample using a two-tailed *t* test (P <0.05) compared against the APO sample. An asterisk (*) signifies a change in average peak intensity with a P-value < 0.05, and n.s. denotes no significance.

No significant difference in K_d found with and without E_2

Binding curve and dissociation constant (K_d) of the ERα-BRCA1 system (above): Each graph plots the fraction of ER α bound to BRCA1 against the concentration of BRCA1 found. A binding curve was derived using data from a fluorescence quenching experiment. A nonlinear regression curve derived from a binding equilibrium equation was used to find K_d [4]. No significant difference was found between the K_d of the ER α -BRCA1 system in the presence and absence of E_2 in these experimental conditions.

Conclusions

- A pull-down assay and NMR spectroscopy confirmed binding between the ERα LBD and BRCA1 constructs used.
- Quantification of NMR average peak intensity indicates that the presence of estrogen leads to a stronger binding affinity between ER α and BRCA1, but fluorescence quenching experiments did not find any significant difference in the binding coefficients.
- Additional fluorescence quenching is required to better understand binding affinity

References and Funding

- Wang L, Di LJ. BRCA1 and estrogen/estrogen receptor in breast cancer: where they interact? Int J Biol Sci. 2014 May 14;10(5):566-75.
- 2. Ma Y, Katiyar P, Jones LP, Fan S, Zhang Y, Furth PA, Rosen EM. The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol. 2006 Jan;20(1):14-34.
- 3. Eakin CM, Maccoss MJ, Finney GL, Klevit RE. Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5794-9.
- 4. Stewart M.D., Morgan B., Massi F., Igumenova T.I. Probing the determinants of diacylglycerol binding affinity in the C1B domain of protein kinase Cα. J Mol Biol. 2011 May 20;408(5):949-70.

Thank you to the TCU College of Science and Engineering for funding of this project.

SciCom