

<u>Alex Bernal</u>, Andrew H. Ryu, Andrea Guedez, and Youngha Ryu Department of Chemistry, Texas Christian University, 2800 S. University Dr., Fort Worth, TX 76129

Introduction

Among the various types of protein modification, acetylation is critical for proper function. N-terminal acetylation plays essential roles in the stability, activity, and targeting of proteins in eukaryotes. Most proteins expressed in bacteria are not acetylated, although the N-terminal acetylation is critical for the activities of a handful of biologically important proteins. Therefore, it is of practical significance to control N-terminal acetylation of recombinant proteins in bacteria. This study is aimed to alter the substrate specificity of RimJ, a protein N-terminal aminotransferase (NAT) that is known to acetylate a few recombinant proteins including the Z-domain in E. coli. We created RimJ variants, so that the active site becomes larger to accommodate substrate proteins containing varying N-terminal amino acid residues. Then, the substrate specificity of RimJ was investigated by co-expressing two Z-domain variants T2I and S3K, which were not acetylated by the wild type RimJ. The expressed Z-domain variants were purified by immobilized metal affinity chromatography and subsequently analyzed by mass spectrometry, by which a 42-Da mass increment indicates the presence of N-terminal acetyl group.

Background

N-terminal acetylation by RimJ is dependent upon:

- Initiator methionine cleavage
- 2. N-terminal amino acid sequence

Protein N-terminal acetylation:

Towards protein N-terminal acetyltransferase with broad substrate specificity

- S3K
- chromatography
- Mass Spectrometry

SERC

