Furthering Control of Drug Design; N-Alkylated Triazine Macrocycles Display Unique Conformations

Casey Gardner, Eric E. Simanek*

Department of Chemistry & Biochemistry, Texas Christian University

Oral Drug Design Philosophy

For pharmaceuticals to be able to be taken by mouth, they need to be “orally available” and be soluble in both aqueous (blood) and organic (lipids) media.

Lipinski’s “rule of five” describes the parameters for good solubility in both aqueous and organic media:

- No more than 5 hydrogen bond donors
- No more than 10 hydrogen bond acceptors
- A molecular mass less than 500 daltons
- An octanol-water partition coefficient (log P) that does not exceed 5

![Ibuprofen](image)

N-Alkylation, Macrocycles, and Cheating the Rule of Five

N-Alkylation (replacing the hydrogen of the amine of an amino acid) is a useful tool to lower the number of hydrogen bond donors. Macrocycles can adopt multiple conformations to be more soluble in aqueous or organic media, therefore not needing to strictly follow the rule of five.

![Cyclosporin](image)

![Ibuprofen and Cyclosporin](image)

N-Alkylation Leads to New Structures

N-Alkylation of our macrocycles leads to novel structures and control of their dynamics through more rigid configurations.

Future Work:
- Acquire crystal structure data of other macrocycles to compare solution and solid state
- Find the logP value for each macrocycle

Possible Rotamer Structures

- ![I-Me Glycine](image)
- ![M-Me Glycine](image)
- ![I-Glycine](image)
- ![M-Glycine](image)

Conclusion and Future Work

N-Alkylation of our macrocycles leads to novel structures and control of their dynamics through more rigid configurations.

Future Work:
- Acquire crystal structure data of other macrocycles to compare solution and solid state
- Find the logP value for each macrocycle

Acknowledgement

This work is supported by a grant from the National Institutes of Health and the Robert A. Welch Foundation.