

Analysis of Radical Scavenging Ability in Modified Small Pyridine-Containing Ligands For Therapeutic Treatment of Neurodegenerative Diseases

CHRISTINA MANTSOROV, KRISTOF POTA, AND KAYLA N. GREEN GREEN RESEARCH GROUP, DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY AT TEXAS CHRISTIAN UNIVERSITY, FORT WORTH, TX USA

Design Strategy: 8-Hydroxyquinoline type molecules have been shown to present radical scavenging abilities. Therefore, addition of this moiety LI should increase scavenging ability

- ✓ L4 is a strong radical scavenger (IC₅₀ = 400 μ M).
- ✓ Conclusion: Functionalizing parent LI with reactive, antioxidant small molecules can increase radical scavenging reactivity.

FUTURE DIRECTIONS

- Complete the coumarin carboxylic acid (CCA) assay for LI-L3 to evaluate the ability of each to halt redox cycling of redox active metal-ions.
- Explore cellular cytotoxicity of new molecules L2-L4.
- Use literature to identify other radical scavenging groups to hybridize with our scaffolds.

ACKNOWLEDGMENTS

National Institutes of Health

FOUNDATION

Kristof Pota for synthesis of new molecules L2 – L4.

Contacts

