

Introduction

Various semiconductor metal oxides such as ZnO_{2} , WO_{3} , and $BiVO_{4}$ have been utilized for photoelectrochemical (PEC) water-splitting as well as for value added alternative reactions.¹⁻² However, single-phase materials often face multiple challenges including poor charge separation efficiency and surface degradation especially in aqueous environment. $BiVO_4$ is a promising photoanode material, but the abovementioned shortcomings are still present. We suggest to use BiVO₄ materials to perform alternative reactions at the anode that can yield a value-added products, i.e oxidation to primary alcohols to aldehydes. Therefore, in order to enhance the PEC performance of BiVO₄, our group has focused on doping techniques for $BiVO_4$ with tungsten (W) to yield tungsten doped BiVO₄ (W:BiVO₄). In addition, polyethylene glycol (PEG) has also been introduced to the material as a morphological control agent. The addition of polymer to the precursor solution helps to control the porosity of the resulting surface film by promoting a less porous and more compact formation of BiVO₄ on FTO.³

- procedure is the same as described above but without the addition of the mixture of PEG. Each photoanode is subjected to UV-Vis spectroscopy.
- Then, TAUC plots were constructed based on the UV-Vis data in order to obtain band gap of the materials.
- The photochemical oxidation of TEMPO: samples were illuminated from the back.

Polyethylene glycol (PEG)-assisted Morphology Control of Tungsten Doped Bismuth Vanadate (W:BiVO4) **Materials and Their Application in Photoelectrochemical Reactions**

Khanh Nguyen, Nelli K. McMillan and Benjamin D. Sherman

Department of Chemistry & Biochemistry, Texas Christian University, TX 76129

- $FTO:W:BiVO_4 + PEG (2L)$ after depositing epoxy

LSV in electrolyte (0.1 M TBAPF₆), with 5 mM TEMPO, Solid lines indicate photocurrents upon illumination and dashed lines- dark currents.

CA in electrolyte (0.1 M TBAPF₆), with 5 mM TEMPO with 30s dark-light intervals. Applied bias of 0.3 V vs. Ag/Ag⁺ (calibrated to SCE with ferrocene, $E_{Fc}^{+}/Fc} = 0.45$ vs. SCE). Green line is the