Fungi-induced Alterations on Plant Biomass: Impacts on Carbon Sequestration Potential and Pollution Control

Introduction

- Microbial interactions with plant biomass contribute significantly to the cycling of nutrients and contaminants in the environment.
- Primarily among these interactions is the role of fungal-induced degradation of organic matter, its regulatory effects on the carbon cycle, and pollutant transport.
- This study uses fungal colonization of spent coffee grounds as a model for understanding fungi-plant biomass interactions and their relationship to carbon stability and pollutant removal capacity.

Materials and Methods

- Coffee samples molded for a year: 0 months (0m), 3 months(3m), 6 months(6m), 9 months(9m) and 12 months (12m) under average temperature of 21.9°C and 100% humidity were used as organic models for this study.
- To investigate the physiochemical properties induced by fungal activity on organic matter, the samples were characterized with the following analyses:
 - Scanning Electron Microscopy(SEM)
 - Thermogravimetric Analysis (TGA)
 - Elemental Analysis (EA)
 - Nuclear Magnetic Resonance (NMR)
- Spectroscopic experiments were conducted to assess the impact of fungal activity on the samples' sorption capacity (using gentian violet as a cationic sorbate).

Gentian violet absorbance at 500nm and a standard curve used to generate concentration profiles for analysis of sorption, quantity, kinetics, and dynamics

Jesse Mugisha¹ Faculty Advisor: Dr. Omar R. Harvey²

¹Department of Environmental Science, Texas Christian University, Fort Worth, TX, USA ²Department of Geological Sciences, Texas Christian University, Fort Worth, TX, USA

Results

- Photographic and SEM images show fungi-induced physical changes on the coffee samples as a function of molding time.
- Fungal (spores and hyphae) growth result in observable physical disintegration of coffee.
- Physical disintegration followed the order 12 mths > 9 mths > 6 mths > 3 mths > 0 mths.

• NMR results show increased aromaticity and preferential loss of O-alkyls with increase in a fungal alteration

- Fungal activity increases the carbon sequestration potential of remaining material by 1.16.

This study was funded by the Dr. Arthur J. Ehlmann Scholarship for Research Excellence. Appreciation to Dr. Costa Viviana for assisting us with SEM image collection, and the rest of the FROGG Lab for all the help offered.

COLLEGE OF SCIENCE & ENGINEERI DEPARTMENT OF GEOLOGICAL SCIEN

Results

$Q_{sorbed} = \frac{(k_1' Q_{max1}^2 t)}{(1+k_2 Q_{max1} t)}$	(1)	
$Q_{sorbed} = \frac{(k_1' Q_{max1}^2 t)}{(1+k_1 Q_{max1} t)} + \frac{(k_1' Q_{max1}^2 t)}{(1+k_1 Q_{max1} t)} + \frac{(k_1' Q_{max1}^2 t)}{(1+k_1 Q_{max1} t)}$	$\frac{2}{2} Q_{max2} t}{k_2 Q_{max2} t}$ (2)	
Where,		
• k_1 ' and k_2 ' are the apparture of k_2 ' are the apparture of k_1 ' and k_2 ' are the apparture of k_1' and k_2 ' are the apparture of k_1 and k_2 ' are the app	rent pseudo 2 nd order rate constants for step 1 ar	nd
• Q_{max1} and Q_{max2} are the respectively	e sorption capacities for step 1 and step 2	
t is the overall reaction	time (He MeKey 1008)	

ion						
	0m	3m	6m	9m	12m	
	0.0104	0.0128				
p 1(mg/kg)	37.0	42.6				
	2.26 x 10-4	7.82 x 10-4	7.94 x 10-6	8.27 x 10-6	1.04 x 10-5	
p 2 (mg/kg)	17.7	9.73	107	98.8	103	