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Abstract

The 1.2 Ga Barby Formation located in SW Namibia is comprised of basaltic andesites and shoshonites from oblique subduction in a volcanic arc setting. Recent mapping and whole-rock geochemistry within the Barby Formation has been completed by previous TCU graduate students. Clinopyroxenes (CPX) from samples collected dur-
Ing these studies were analyzed using an Electron Microprobe (EMP) at Fayetteville State University, North Carolina. Data collected from CPX phenocrysts corresponds with previous findings that the samples can be divided into two groups. Group 1 samples show an enrichment in rare earth elements (REE) and light rare earth elements
(LREE) Th, Zr, La/Yb, Nb, with a smaller Ti anomaly as compared to Group 2 (Lehman, 2019; Orhmundt, 2020). CPX phenocrysts within Group 1 have higher TiO2 wt% concentrations. Differences between the two groups are attributed to different source rock compositions and partial melting (Lehman, 2019; Orhmundt, 2020). Mineral
compositions and cation ratios from EPMA data were also used to determine geothermobarometric conditions of the formation’s magma plumbing system. Single-clinopyroxene thermometry and barometry equations from Wang et al. (2021) and Purtika (2008) were utilized in this study. Wang et al. (2021) calculations resulted with average
pressures between 1-3 £ 1.5 kbar and average temperatures between 1100-1200 °C. Purtika (2008) calculations resulted with overall higher pressures averaging at 3-5 kbar and slightly hotter temperatures at 1200 £ 50°C. Overall temperatures are higher than what would be expected in the basaltic andesitic system and variations could
be due to the low-grade metamorphism the area has experienced that has affected the geochemistry.
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