

ENERGY OF AMINO-BEARING ORGANIC MOLECULES AT THE FERRIHYDRITE-WATER INTERFACE TCU Marie Aurore Niyitanga Manzi and Omar R. Harvey GRADUATE STUDIES

Department of Geological Sciences, Texas Christian University, Fort Worth, TX, USA

Research Findings

65.0

-

15.9

33.0

14.1

5.3

			Glycine	2	
		Sorption		Desorption	
		Rxn 1	Rxn 2	Rxn 1	Rxn 2
Reaction rate					
constant, $k' \pmod{1}$					
	pH 2	0.47	0.21	0.32	0.15
	pH 5	0.38	0.22	0.33	0.20
	pH 11	0.32	-	0.29	-
Heat of reaction, ΔH	-				
(kJ/mol of COO ⁻)					
(pH 2	18.2	22.3	15.6	41.9
	pH 5	2.6	9.3	2.6	4.5
	pH 11	72.2	_	51.3	-
	G 3.5-COOH				
		Sorption		Desorption	
		Rxn 1	Rxn 2	Rxn 1	Rxn 2
Reaction rate					
constant, k' (min ⁻¹)					
	pH 2	0.32	0.21	0.53	0.34
	pH 5	0.63	0.27	0.43	-
	pH 11	0.26	-	0.56	0.27
Heat of reaction, ΔH					
(kJ/mol of COO ⁻)					

74.8

51.0

13.4 22.4

pH 2

pH 5

pH 11 4.1

exothermic reactions
 decreasing reaction
time with pH
Across pH glycine desorbs in
endothermic reactions
 decreasing reaction
time with pH
≻ At pH 2 G3.5-COOH sorbs in an
exothermic reaction
≻ At pH 5 G3.5-COOH sorbs in
mixed reactions (exothermic and
endothermic)
≻ At pH 11 G3.5-COOH sorbs in
bimodal exothermic reactions
Across pH desorption reactions are
exothermic
 bimodal at pH 2 & pl

2. QUANTITY, KINETICS & BOND STRENGTH

> Alkaline pH conditions resulted in fewer reaction steps

11

- > Acidic conditions promoted faster reactions than alkaline conditions
- Previously sorbed molecules were reversible across pH
- ➢ Glycine promoted more sorption than G3.5-COOH
- ➢ Glycine's strongest bonds are formed in alkaline pH conditions
- ► G3.5-COOH's strongest bonds are formed in acidic pH conditions

- > At pH 2: glycine and G3.5-COOH form non-electrostatic bonds via the unprotonated COOH with the protonated NH_3^+ pointed away from the positively charged ferrihydrite surface
- > At pH 5: glycine and G3.5-COOH form electrostatic bonds with ferrihydrite via the deprotonated COO⁻ with the protonated NH_3^+ pointed away from the positively charged ferrihydrite surface
- ≻ At pH 11: glycine and G3.5-COOH form nonelectrostatic bonds with ferrihydrite via deprotonated COO⁻ and NH₂ with the ferrihydrite's surface that is 1%positively charged

Ongoing Work

Using hematite as the mineral surface to understand the effect of				
crystallinity on these interactions				
Conduct the experiments at other pH conditions to obtain a				
gradual understanding of the effect of pH on OM-mineral				
interactions as a function of pH				
Acknowledgements				
Financial support for this research project was provided by the US				
Department of Energy Office of Desig Energy Science through				
Department of Energy Office of Basic Energy Science through				
Award DE-SC0018264				

Support for attending this conference was provided by TCU graduate studies office, FROGG labs, and TCU department of geological sciences

References

- ➤ Kleber et. al. (2021), Nature Reviews Earth & Environment volume 2, pages 402–421
- → Harvey et. al. (2018), Environmental Science & Technology 2018 52 (11), 6167-6176