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Background

• Respiratory syncytial virus (RSV) can cause a severe res-
piratory illnesses particularly in young children and the el-
derly.

• Defective viral genomes (DVGs) have recently been found
during RSV infections and are thought to be linked to the
severity of the illness.

• While we derive our foundational understanding of the
spread of RSV from experimental data, we may see help-
ful trends and correlations beyond the surface level through
mathematical modeling.

• We used mathematical models to estimate parameter val-
ues so that we could pinpoint where DVGs were affecting
the viral replication process.

• In this study, we present a number of examples of how
ODE mathematical modeling has been used to help under-
stand the spread of RSV under different scenarios of DVG
appearance.

Mathematical model

We used a basic mathematical model of viral infection,

dT

dt
= −βTV

dI

dt
= βTV − δI

dV

dt
= pI − cV,

• The model does not include an eclipse phase and assumes
that cells produce and release virus immediately upon in-
fection.

• T , I, and V are the variables of the model.

• β, δ,c, and p are the parameters.

• T represents the number of target cells infected with virus
V at a rate β.

• Once infected, the cells enter the infectious phase I, in
which they produce virus at a rate p, die at rate δ, and are
cleared at rate c.

Methods

• To fit the data and calculate the most accurate parame-
ter estimates, we used Python’s built-in optimizing function
scipy.optimize.minimize.

• We minimized the SSR

SSR =
n∑

i=1

(yi − ym)2

in order to find the parameters that would produce a curve
closest to the actual data.

• We used bootstrapping to estimate the posterior distribu-
tions of our parameters.

• We shuffled the residuals at each given time point, then
repeated the minimization process to produce another set
of parameter estimates.

• After repeating this process 1000 times, we calculated the
95% confidence interval for each set of parameters.

Experimental data sets

We have two main data set from Felt et al. (2021) Nature Mi-
crobiol. consisting of a challenge study of RSV infections in
healthy adults. The appearance of DVGs was then classified
in different ways: early vs. late, prolonged vs. transient.

Fitting results

The experimental data and the best fit model predictions are
shown below:

Parameter values

The best fit parameter estimates are given below:

1 β p δ c R0 tinf

Early 4.38e-05 5.06e+06 7.62 2.31e+01 1.26 0.095
95% CI (-3.37, -5.97) (14.8, 4.39) (2.07e+07, 1.28) (472, 1.64) (0.00472, 2.95e-282) (0.443, 3.88e-05)
DVG 2.93e-06 1.77e+09 2.69e+01 1.81e+02 1.07 0.020

95% CI (-3.65, -6.25) (15.0, 4.58) (4.01e+08, 0.864) (96.1, 0.614) (0.074, 7.18) (0.506, 1.96)
Late 2.21e-08 4.95e+12 2.26e+02 4.76e+02 1.01 0.00428

95% CI (-5.73, -7.68) (13.1, 8.49) (408, 2.34) (1.35e+03, 50.6) (4.13e-46 0.0) (0.0703, 0.003)

2 β p δ c R0 tinf

Transient 1.01e-05 1.78e+08 1.18e+01 1.31e+02 1.16 0.0334
95% CI (-3.69, -6.18) (16.0, 4.74) (1.82e+09, 1.17) (139, 0.961) (0.0322, 2.24e-292) (0.461, 7.22e-06)
DVG 2.55e-07 1.89e+12 3.87e+02 1.24e+03 1.01 0.002

95% CI (-3.62, -6.42) (17.2, 4.63) (3.91e+09, 0.853) (486, 1.61) (0.0131, 0.0) (0.455, 2.76e-06)
Prolonged 1.02e-08 2.18e+13 6.11e+01 3.46e+03 1.05 0.00300

95% CI (-6.30, -8.60) (14.9, 8.73) (1.33e+03, 3.56) (2.600e+03, 18.1) (7.25e-20 0.0) (0.0908, 0.00106)

3 β p δ c R0 tinf

95% CI (-4.16, -7.02) (-11.1, -11.1) (1.00, 1.00) (1.0, 1.0) (6.11e-18, 8.44e-21) (1.54e+09 5.72e+07)
DVG 3.10e-05 3.66e+07 2.41e+00 2.51e+02 1.88 0.0420

95% CI (-4.16, -7.02) (16.2, 6.41) (5.58e+08 1.38) (3.88e+03, 16.5) (1.41e-24 0.0) (0.117, 9.41e-06)
Late 3.27e-07 5.48e+09 9.01e+00 1.51e+02 1.32 0.0334

95% CI (-5.91, -7.34) (12.1, 8.42) (159, 3.47) (365, 31.2) (4.28e-36, 7.36e-287) (0.084, 0.00653)

4 β p δ c R0 tinf

Early 5.00e-06 2.19e+09 3.17e+01 3.26e+02 1.06 0.0135
95% CI (-3.74, -6.29) (16.8, 5.11) (1.76e+09, 1.58) (869, 2.70) (0.000177, 1.90e-283) (0.296, 4.10e-06)
DVG 2.20e-05 1.82e+07 3.25e+00 7.80e+01 1.58 0.0707

95% CI (-3.60, -6.17) (16.0, 4.54) (1.84e+09, 0.771) (92.3, 0.542) (0.0670, 1.45e-262) (0.521, 8.26e-06)
Late 1.68e-08 1.31e+13 6.90e+01 3.06e+03 1.04 0.00301

95% CI (-6.04, -8.06) (13.6, 8.96) (476, 2.67) (2.08e+03, 57.7) (3.34e-51, 0.0) (0.0562, 0.00257)

Parameter distributions

Using bootstrapping, we found distributions for the param-
eter estimates. We compared the distributions in each set of
experiments to see if there were any dynamical differences in
the time course of viral load that depended on the appear-
ance of DVGs.

• In many cases, the posterior parameter distributions over-
lap indicating that there is no statistically significant differ-
ence between the parameter estimates for different cases.

• Some of the distributions, however appear to be separated
and might be distinct for the different experimental groups.

Statistical comparison

We used a Mann-Whitney U test to check if parameter distri-
butions were distinct. p values are given in the tables below.
Statistically significant values are in bold.

1 β p δ c R0 tinf

Early/DVG 0.389 0.356 0.247 0.076 0.405 0.431
Early/Late 0.0005 0.098 0.365 0.008 0.440 0.269
DVG/Late 0.001 0.478 0.141 5.82×10−5 0.436 0.475

2 β p δ c R0 tinf

Transient/DVG 0.371 0.411 0.510 0.129 0.469 0.443
Transient/Prolonged 1.30×10−5 0.206 0.249 0.001 0.493 0.519

DVG/Prolonged 2.37×10−5 0.428 0.227 0.034 0.343 0.382

3 β p δ c R0 tinf

DVG/Late 0.015 0.483 0.228 0.521 0.167 0.281

4 β p δ c R0 tinf

Early/DVG 0.441 0.488 0.514 0.005 0.426 0.476
Early/Late 0.005 0.238 0.365 0.024 0.468 0.446
DVG/Late 7.44×10−5 0.216 0.197 2.17×10−5 0.503 0.478

Conclusions

• Parameter differences show up primarily in the infection
rate, β and the clearance rate c.

• When DVGs appeared late or were prolonged, the infection
rate tended to be lower.

• When DVGs were early, clearance rate tended to be higher.

Future directions

• Create a mathematical model that includes DVGs to study
how they affect the viral infection.

RSV can be an important cause of severe respiratory illness
and is often found in infants, the elderly, or immunosup-
pressed patients. Here, we use mathematical models of in-
fections within a host in conjunction with experiments to fur-
ther our understanding of viruses. In studying the spread of
RSV and its reproduction within target cells, this study aims
to compare parameters governing viral spread among RSV
infections with different amounts of defective viral genomes
(DVGs). The final parameter distributions are plotted on
the given histograms, which show that DVGs tend to affect
infection rate and clearance rate.


