Role of sigM and glpF on antimicrobial resistance and virulence in Bacillus anthracis

Salina Hona, Kelsey Waite, Graham Ellis, and Shauna M. McGillivray

Department of Biology, Texas Christian University, Fort Worth, TX

Introduction

Bacillus anthracis is a gram-positive bacterium that causes the deadly anthrax disease. ClpX is a subunit of ClpXP protease that is known to be essential in virulence as well as providing resistance to cell-envelope targeting antibiotics such
as penicillin, daptomycin, and the antimicrobial peptide $L L-37$. While $c / 0 X$ is critical as ernene
for virulence in B. anthracis, it is unlikely to be directly mediating the effect. Hence, our lab investigated the genes that are differentially expressed in the $\Delta C / p X$ mutant compared to the wild type B. anthracis through microararay analysis. We found 119
genes that were highty differentially expressed in the $\Delta c l a X$ mutant. In this study, we genes that were highly differentially expressed in the $\Delta c / p X$ mutant. In this study, we
focused on two genes sigM and $g / p F$, which are downregulated in the $\Delta c / p X$ mutant, focused on two genes sigM and glpF, which are downregulated in the $\triangle C$ cipX mutant,
because sigM and glpF confer resistance to cell-wall targeting antibiotics in the closely related gram-positive bacterial species, Bacillus subtilis and Staphylococcus aureus respectively. We wanted to determine whether loss of sigM and glpF will

CIpXP protease

CIpX: regulatory ATPase Recognizes and
unfolds proteins CIPP: proteolytic core CIPP: proteolytic c
Degrades Degrades
proteins

Loss of Clp protease can have pleiotropic effects on bacterial cell

Downregulated in $\Delta c / p X$

Upregulated in $\Delta c / p X$

MIC Assay with daptomycin

References
McGilivay, S.M. T. Tran, D. N. Ramadoss, N. S., Alumasa, J. N... Okumura, C. Y., Sakoulas, G., Vaughn, M. M. Zhang, D. X., Keiler, K. C., \& Nizet, V. (2012). Pharmacological Inhibition of the CIIXP Protoease

sigM IM is more susceptible to daptomycin and penicillin although in a growth phase dependent manner.

- $g / p F$ is critical for penicillin resistance in stationary phase.
- sigM and glpF are not critical in providing tolerance to heat stress
- Loss of $g / p F$ increases susceptibility to acid stress

Future directions

- Future studies will examine the susceptibility of sigM IM and glpF IM mutants to antibiotics like LL-37 and vancomycin.
Complementation of these mutants will serve to further support the importance of these genes for the roles we examined.
This research will aid in understanding the mechanism of antibiotic resistance and virulence in the CIpX regulatory network in B. anthracis.

