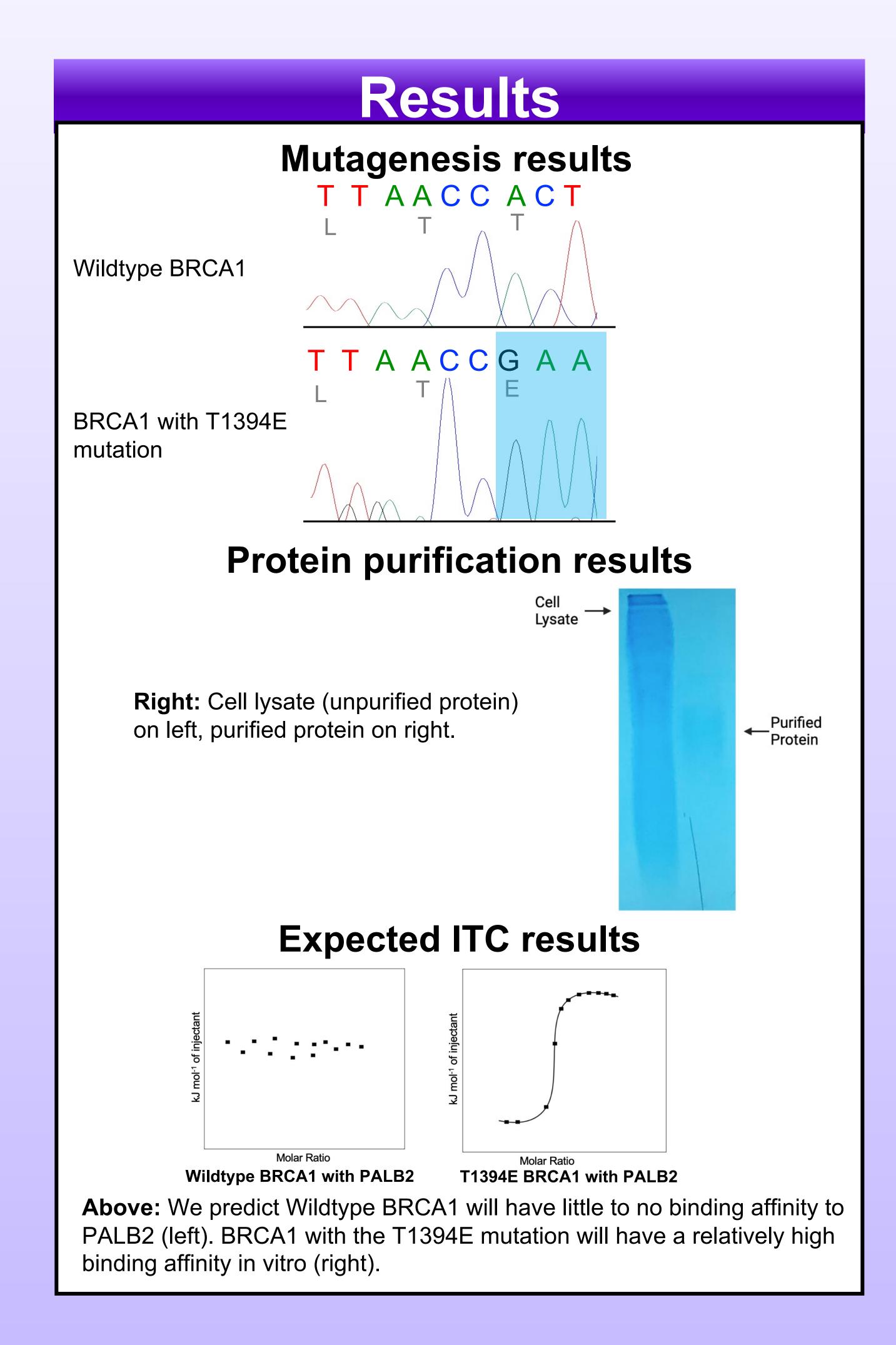
Investigating the Effects of BRCA1 Threonine Phosphorylation on PALB2 Interaction

TCU

Chloe Duvak and Mikaela D. Stewart Texas Christian University, Fort Worth, TX

BRCA1 and PALB2 function in homologous recombination. Radiation, chemicals, stress DNA Damage Above: Upon DNA damage, BRCA1 and PALB2 form a heterodimer which functions to repair damaged DNA. Disruption of this interaction can result in development of mammary tumors [1]. Phosphorylation could potentially act as an "onswitch" for protein interaction. BRCA1 Phosphorylation of Threonine

Above: Research has shown that phosphorylation of BRCA1 at specific sites, including T1394, promote the DNA damage response [2]. We predict a mechanism that phosphorylation promotes a conformational change in BRCA1 which leads to increased binding affinity with PALB2


Homologous

Recombination

Conformational

Binding Affinity

Methods Mutagenesis was used to create a phosphomimicking mutant. 2. Degrade with Dpn1 (Inactive BRCA1) Phospho- Threonine (Mimics active BRCA1) **Anneal Primers** 3. Transform into Bacteria Protein is purified using affinity chromatography. ITC is used to measure protein interaction. Buffer in syringe **Buffer titrated** into target **T1394E BRCA1** and PALB2 in cell

Objectives

- Create a phosphomimic mutant at T1394 site in BRCA1 using mutagenesis.
- Purify mutated BRCA1 and wildtype PALB2 protein using affinity chromatography.
- Measure interactions between BRCA1 and PALB2 using ITC.

Future Directions

- Measure ITC data to prove our hypothesis.
- Measure binding affinity and interaction between T1394E BRCA1 and PALB2 with methods such as NMR (Nuclear Magnetic Resonance Spectroscopy) and CD (Circular Dichroism) to better understand this interaction.
- Investigate purpose of phosphorylation at other sites such as S1423E.

Acknowledgements

References:

Foo, T. K., Vincelli, G., Huselid, E., Her, J., Zheng, H., Simhadri, S., Wang, M., Huo, Y., Li, T., Yu, X., Li, H., Zhao, W., Bunting, S. F., & Xia, B. (2021). ATR/ATM-mediated phosphorylation of BRCA1 T1394 promotes homologous recombinational repair and G2–M Checkpoint Maintenance. *Cancer Research*, 81(18), 4676–4684.

Pulver, E. M., Mukherjee, C., et al. (2021). A BRCA1 coiled-coil domain variant disrupting PALB2 interaction promotes the development of mammary tumors and confers a targetable defect in homologous recombination repair. *Cancer Research*, 81(24), 6171–6182.

Thank you to SERC foundation for funding this project. Thank you also to Dr. Mikaela D. Stewart for her guidance on this project.