

Exploration of Radical Scavenging Reactivity in Substituted Pyridinophane Ligands for Alzheimer's Disease Therapeutics

CHRISTINA MANTSOROV, KATHERINE SMITH, DAVID FREIRE, KRISTOF POTA, Ph.D., MAGY MEKHAIL, Ph.D., and KAYLA N. GREEN, Ph.D. GREEN RESEARCH GROUP, DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY AT TEXAS CHRISTIAN UNIVERSITY, FORT WORTH, TX USA

Py₂N₂ Series

R = OH, OMe, H, I, CI

Design Strategy: PyN₃ moieties have been shown to provide radical scavenging reactivity. Therefore, adding another pyridine to the ligand backbone should increase scavenging ability.

- \checkmark All Py₂N₂ moieties are strong radical scavengers
- \checkmark Quenching activity occurs more effectively at lower concentrations compared to the PyN_3 series
- \checkmark Further studies are needed to understand the impact of pyridine ring substitutions on radical scavenging activity within the Py_2N_2 series
- \checkmark **Conclusion:** An additional pyridine group with the macrocyclic core increases radical scavenging activity compared to PyN_3 series

ACKNOWLEDGEMENTS

