PetroPalette: The Petro-Informatics Chemical Structure Database Sydney Mazat and Benjamin Janesko* Department of Chemistry & Biochemistry, Texas Christian University

THIS PROJECT

Petroleum crude oil, unconventional crudes, and re-This database can be used to make calculations newable bio-crudes are essential materials in our and predict characteristics of molecules, such as viscosity, density, and reactivity, which are all everyday lives. Crudes are highly complex chemical critical in refinery plants, transportation, and usmixtures, estimated to contain between 100,000 and 100,000,000,000,000,000 unique molecules. Since age of these fuels. Machine learning can be used 2015, single-molecule imaging has visualized hunto determine important characteristics of crudes molecules, leading to more refined and successful dreds of chemical structures, and historical literature hypotheses. PetroPalette will eventually predict has published thousands of proposed structures. This project builds an open database populated with possible structures of petroleum crudes and their ensemble property distributions. The next step in published crude structures enabling data-driven this project is to add more real crudes into Petroanalysis of these structures, and detailed workflows, allowing for easy future insertion of new molecules Palette using the successful workflows, followed by machine learning to build predicted structures. into the database.

2. Convert published structures into SMILES string

def descriptor_table (smiles, classification, doi) create iupac name, molecular weight, and molecular formula list from smiles for smi in smiles compounds = pub.get_compounds(smi, namespace = 'smiles match = compounds[0 tmolecular formula lis form = CalcMolFormula(molwithH) formula.append(form) #log P list logP_value = crip.MolLogP(molwithH logP.append(logP_value) cation & doi source colum = {'smiles string': smiles iupac_name': iupac, 'molecular_weight': mw, 'molecular_formula': formula 'LogP': logP} description = pd.DataFrame(data = d) description['Classification'] = classification description['DOI_Source'] = doi

• Insert structure and its descriptors into PetroPalette

LONG TERM GOAL

BUILDING PETROPALETTE:

1. Single Molecule Imaging produces chemical structures

Cc1ccc2c(c1)Cc3c(C)ccc23

3. Produce descriptors from SMILES string

iles_string	IUPAC_name	molar_mass	molecular_formula	log_p	DBE	classification	doi_source
c2ccc1ccccc1c2c9sc%11c7c(ccc6c5cc3ccccc	18-methyl-41-thiaund	547	C41H22S	12.3673	31	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
ccc2CCC3Cc5cccc6ccc4cc1c2c3c4c56	NULL	294	C23H18	6.04052	15	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
cccc7c5ccc4c3cccc2cc(C)c1cccc(c1c23)c4c5	NULL	387	C28H18S	8.72194	20	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
ccc3c1ccccc1c2cccc2c3c4	2-methyltriphenylene	242	C19H14	5.45462	13	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
c3ccc4cc1c6cc9cccc8ccc7ccc([nH]c1c5ccc(c2	NULL	415	C32H17N	9.2054	25	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
cc2c(c1)cc3ccc4cc7cccc6ccc5cc2c3c4c5c67	heptacyclo[11.11.1.1	326	C26H14	7.4814	20	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
ccc2c(c1)Cc3c(C)cccc23	1,7-dimethyl-9H-fluor	194	C15H14	3.87464	9	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
cccc2c1cc3ccc4ccc5cccc6c(=0)c2c3c4c56	NULL	318	C24H14O	6.15222	18	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
cc3cccc4c7cccc6c1ccccc1c5[nH]c2c(c34)c5c67	NULL	329	C25H15N	7.11792	19	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
cc2cc1ccccc1cc2c6c3ccc5c(C)c4ccccc4cc56	NULL	356	C28H20	8.06944	19	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
ccc(C)c2cc7c(cc12)sc8c6cc3ccccc3c5ccc4cc	NULL	437	C32H20S	9.87514	23	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03
ccc2c6cccc5ccc4ccc3Cc1c2c3c4c56	NULL	278	C22H14	5.94982	16	steam-cracked tar	https://doi.org/10.1021/acs.iecr.8b03

Acknowledgement: This work is supported by the American Chemical Society Petroleum Research Fund 1. Ind. Eng. Chem. Res. 2018, 57, 46, 15935–15941 2. Energy & Fuels 2022, 36, 16, 8714–8724 **Contact:** s.mazat@tcu.edu

