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➢We show that the following discrete two-dimensional logistic predator-prey 

dynamical system with two parameters undergoes a Neimark-Sacker bifurcation 

under certain conditions. Our evidence includes numerical computations of orbits 

and bifurcation diagrams.

➢xn+1 = f(xn, yn)= k1(1-xn)xn + xnyn

➢yn+1 = g(xn, yn) = k2(1-yn)yn - xnyn
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Future Work 

The discrete predator-prey dynamical system exhibits a great variety of 

orbit behaviors, including the Neimark-Sacker bifurcation and its resulting 

invariant curve, chaotic regions, strange attractors, and periodic orbits of 

various periods.

Conclusions 

Figure 1: Bifurcation diagrams plotting the long-term behavior for the predator (left) and prey (right) populations as k1 is 

varied over an interval, while k2 is fixed at 3.5. The Neimark-Sacker bifurcation occurs when k1 is approximately 2.3705. 

Beyond this value, a funnel shape is produced in both graphs; this is the invariant curve that has formed around the fourth 

fixed point. Various n-cycles, such as a 5-cycle, a 7-cycle, a 2-cycle, and a 4-cycle, also show up throughout the funnel.

➢The first step in studying a discrete dynamical system is to calculate its fixed points. 

A fixed point (x*, y*) exists if f(x*, y*) = x* and g(x*, y*) = y*. The fixed points for 

the predator-prey system are (0,0), ((k1-1)/k1, 0), (0, (k2-1)/k2), and ((k1k2-

1)/(k1k2+1), 1 - (2k1)/(k1k2+1)). The fourth of these points is the only one that must 

be studied in two-dimensions if it has nonzero coordinates. We focus on the fourth 

point when its coordinates are positive, since negative populations are meaningless.

➢The second step is to analyze the stability of the fourth equilibrium point. This is 

achieved by calculating the eigenvalues of the Jacobian matrix at the fourth point. 

The Jacobian matrix is calculated as the following:

➢After finding the above matrix, we find the determinant of the equation Jf -Aλ and 

solve for the eigenvalues λ1,2. These eigenvalues will determine the stability or 

instability of a fixed point.

➢ If the eigenvalues are real, the fixed point is stable when max{|λ1|, |λ2|} < 1, and 

unstable if one or both eigenvalues have magnitude(s) greater than 1. If the 

eigenvalues are complex, the fixed point is stable when |λ1,2| < 1 and unstable when 

the magnitude is greater than 1.

➢Neimark-Sacker bifurcations occur when the complex eigenvalues have a 

magnitude equal to 1. After the bifurcation, an invariant curve forms around the 

fixed point, which can either attract or repel nearby orbits (orbits being the 

population values over time). A supercritical Neimark-Sacker bifurcation produces a 

stable invariant curve, while a subcritical Neimark-Sacker bifurcation results in an 

unstable invariant curve.

k1-lapse video
3D bifurcation 

diagram

Videos

Videos were made to better visualize how changes 

in the growth parameter k1 leads to changes in the 

long-term behavior of the two populations. In the 

first video, the populations are plotted in two 

dimensions, where each frame has a different k1

value. The second video shows the same behavior as 

the first, but plots k1 along the z-axis, producing a 

3D bifurcation diagram.

The various invariant curves, as seen in the k1-lapse video to the left, may 

require further research, as they can occur under both complex and real 

eigenvalues, as opposed to the Neimark-Sacker bifurcation. The fractal 

dimension of the strange attractors that form around the fourth fixed point 

may also be calculated in the future.
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