Probabilities on Latin Squares

COLLEGE OF

SCIENCE\&ENGINEERING

Department of mathematics

∇

Abstract

A Latin square is an $n \times n$ square that contains n different symbols, often numbers that are arranged so that each symbol appears exactly once in each row and column. In this project, we look at the probabil ample a 3×3 square will contain the numbers $1,1,1,2,2,2,3,3$ in a random assortment. Using counting ethods and statistical estimation through Python, we discover the proportion of Latin squares to total squares.

Example Latin Square

The following is a valid 4×4 Latin square

1	2	4	3
4	3	1	2
3	4	2	1
2	1	3	4

Estimation with Python
In order to check my calculations, I used Python to simulate random squares of sizes $2 \times 2,3 \times 3$, and 4×4 Due to limitations with technology, 4×4 was the largest size square that I attempted to create in Python By listing the valid numbers that would be used in a square, randomizing, and reordering into a square shape, I created random squares that I could test for the quality that would make it a Latin square. In or der to check for uniqueness of numbers in each row and column, I used lists and sets. In python, a list can contain any values, whereas a set can only contain unique values. With this information, I turned each row and column of the squares into a list and a set and then compared the lengths of each. If th ist and the set had the same number of elements, then I knew that that row or column contained only unique values. If every row and column passed this test, then I knew the square must be a Latin square Counting the squares that met the criteria and the total randomly generated squares, icreated the proportion of Latin squares to total squares for the 3 different sizes of squares. By simulating this process hundreds of times, Ivisualized this estimation through histograms with a mean that is approximately equal to the calculated proportion.

$$
2 \times 2 \text { Latin Squares }
$$

The 2×2 case of Latin squares is the simplest variety of Latin Squares. There are only two possible variations of Latin squares and six possible variations of squares with the given symbols; an overall proportion of $1 / 3$ or 0.33333 . My code was able to estimate this proportion as 0.33323 with a standard deviation of 0.00461 .

3×3 Latin Squares
Using the same technique, I discovered the estimated proportion of 3×3 Latin squares to be 0.00715 with a standard deviation of 0.00025 . This estimate was actually more precise than the 2×2 estimation.

Anna Long, Advisor: Dr. Drew Tomlin
Department of Mathematics, Texas Christian University
4×4 Latin Squares
discovered the estimated proportion of 4×4 Latin squares to be 9.06×10^{-6} with a standard deviation of 2.9×10^{-6}. This estimate was again more precise than the previous estimates, due to the fact that the average is a much smaller proportion than the smaller squares. The average printed on the graph is rounded to 5 decimal places, therefore it rounded up to 1×10^{-5}

Counting Techniques
In order to count the Latin squares of various sizes by hand, I counted the different patterns that were possible. Beginning with the small squares and then working my way to larger and larger squares, I counted the patterns of 1 's then the patterns of 2 's and so on. Below is an example of the counting of the 4×4 patterns of 2 's.

Patterns of 1's

The count of patterns of 1 's is simply n ! or $n(n-1)(n-2) . .(2)(1)$. I began with a 1 in the top right corner of every square to simplify my counting, but this does not change my proportion due to symmetry. For example, you take a Latin square with a specific pattern of 1's with a 1 in the top left corner, and swap all the 1 's and $2^{\prime} s$ in that square and you essentially have the same Latin square, and so on by swapping all possible values. Therefore, l'm only working with ($n-1)$! patterns of 1 's for each size square, which is significantly less than n patterns of 1 's when dealing with larger sizes.

Patterns of 2's

Counting the patterns of 2's consisted of drawing a bunch of examples of various sizes and looking for a relationship between the values. I was again able to use symmetry to my advantage for the larger squares and begin with a 2 placed in the top row then multiplying by $(n-1)$ at the end to account for the choices of that first placement. I finally noticed a pattern after finding the patterns of 2 's for the Latin squares up to 6×6. I discovered that by adding the previous 2 counts of patterns of 2 's and then multiplying by $(n-1)$ । would get the count of patterns of 2 's for each pattern of 1 's for the current sized square.

Equations
Total random $n \times n$ squares:

$$
n \prod_{i=0}^{n-2}\binom{n^{2}-i n-1}{n}
$$

Patterns of 1's:
$n!$
Patterns of 2 's:

$$
t_{2}=1 \quad t_{3}=2
$$

$t_{n}: n \geq 4$
$t_{n}=(n-1)\left(t_{n-2}+t_{n-1}\right)$
Conclusion
There are 6 possible 2×2 configurations with 2 of those being Latin squares with two different patterns of 1 's. For 3×3 squares, the random configurations go up to 1,680 with only 12 of these being Latin squares, consisting of 2 patterns of 2 's for each of the 6 patterns of 1's. There are 576 different 4×4 Latin square out of the $63,063,000$ random squares that are made up by 24 patterns of 1 's, 9 patterns of 2 's for each pattern of 1 's, and $1 / 3$ of those resulting in 4 patterns of 3^{\prime} s and the remaining $2 / 3$ resulting in 2 pattern of 3 's. There are $623,360,750,000,000$ random 5×5 squares with 161,280 possible Latin squares with 120 patterns of 1 's, 44 patterns of 2's for each, $5 / 11$ of those patterns of 2's result in 12 patterns of 3 's and $6 / 11$ result in 13 . When the pattern of 2's results in 12 patterns of 3 's, then each of those make 2 Latin squares, but the ones that create 13 patterns of 3 's then $5 / 13$ make 4 Latin squares and the remainin ones make 2 . The following table presents the same information where P1 refers to the patterns of 1 's,
etc. and LS refers to Latin squares.

n	P1	P2	P3	P4	P5	LS	Total
2	2	1	-	-	-	2	6
3	6	2	1	-	-	12	1,680
4	24	9	$\frac{2}{3}(2)+\frac{1}{3}(4)$	1	-	576	63 Million
5	120	44	$\frac{5}{11}(12)+\frac{6}{11}(13)$	$\frac{336}{11}$	1	161,280	623 Trillion

noticed that beginning with the 4×4 Latin squares, two rows and two columns could pair for pattern of $(n-2)^{\prime} s$, and this is what created the 4 resulting Latin squares rather than 2 . Bringing this int higher dimensions would allow for even more resulting Latin squares from each pattern of the ($n-2$) number. A 6×6 Latin square can have 3 of these pairings, so some patterns of 4 's could create 8 , or 2^{3} tatin squares from a single pattern. Generally, the largest number of Latin squares that could arise from single pattern of $(n-2)$'s would be the floor function of $n / 2$ as an exponent of base 2

Future Work
The next steps in this research would be finding the generic formula for counting the patterns of 3 's for an $n \times n$ Latin square. I would continue looking at these patterns until a generic formula for counting Latin squares of a certain size is found. I believe that looking at the patterns within Latin squares will tell a lot about how they are formed such as the paring technique I mentioned I ran into problems with comp ing power due to the larse number of squares had to senerate due to the proportions being so sul.
 Ctistical Sin Plin lin Latin squares so that trends might be able to be drawn for certain patterns.

