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Background

• SARS-CoV-2 is a strain of coronavirus that caused the
global pandemic that has killed 6.8 million people world-
wide.

• COVID-19 affects the respiratory system of an infected
individual, and it may cause complications that can lead
to death.

• Before a vaccine or treatment was available, the most
common preventive measures were the adoption of so-
cial distancing, mask mandates, and lockdowns.

• States have done a good job recording case data, which
allows for the use of theoretical modeling of SARS-CoV-
2 transmission on a large scale.

• We used this data to examine how to model and mea-
sure the effectiveness of non-pharmaceutical interven-
tions.

Mathematical Model

We used a Susceptible-Exposed-Infected-Recovered
model:

dS
dt = − β

N SI
dE
dt = β

N SI − kE
dI
dt = KE − δI

dR
dt = δI

Each equation represents one group of people and
how the number in each group changes over time.

Susceptible Exposed Infected Recovered
β k δ

Since the available data was given in cumulative
cases, we modeled the cumulative cases as a product
of the inverse of the incubation period (k) and the
exposed individuals (E).

dC

dt
= kE

Parameters and Variables

Parameter Name

β Infection Rate
k Incubation Period
δ Recovery Time
N State Population
tld Time of Lockdown

• With the exception of N , parameters were found
by fitting models to data from different states.

• N is fixed to the population of the state.

• We also allow tld as a fitted parameter.

Change in Beta

• As time went by during the COVID-19 pan-
demic states systematically entered states of
lockdown and mask mandates were issued.

• These most definitely affected the spread of
the virus, and they specifically affected the in-
fection rate of the virus as contact between indi-
viduals decreased due to preventative measures.

• To account for this in our model, we simulated
a change in the β value. We did this in 4 dif-
ferent ways:

• sudden change from a β1 value to a lower
β2 on a time of lockdown day (tld).

• linear decay from β1 to β2 centered around
tld:

β = β2−β1
t2−tld

t+ (β1t2−β2tld)
t2−tld

• exponential decay from β1 to β2 starting
at tld:

β = β2 + (β1 − β2)e
tld−t
τ

• logistic decay from β1 to β2 centered
around tld:

β = β2 + (β1−β2)

1+e−
t−t2
τ

• Best model fits were determined by minimiz-
ing the sum of squared residuals (SSR) from 4
different states: Washington, Vermont, Texas,
and New York.

Abrupt Change of β

We show model fits to the cumulative case data
in the four states under the assumption of an
abrupt change in the infection rate.

Linear Decay of β

Below are model fits under the assumption of a
linear change in the infection rate.

Exponential Decay of β

Below are model fits under the assumption of an
exponential change in the infection rate.

Logistic Decay of β

Below are model fits under the assumption of a
logistic change in the infection rate.

Beta Change Graphs

Below are the visualizations of each model de-
crease in β for each respective state.

• Logistic decay leads to very high initial values
of transmission rate for some states.

• All models predict a relatively late change in
transmission rate for the state of Washington.

Bootstrapping

For each model, each parameter was estimated
with a 95 percent confidence level using boot-
strapping. An example plot can be seen below.

While the parameter estimates have reasonably
narrow distributions, we see that there are cor-
relations between some of the parameters.

Model Comparison

We use Akaike’s Information Criterion (AIC) to deter-
mine the best model for changing β.

AIC = n ln(
SSR

n
) +

2(K + 1)n

n−K − 2

AIC penalizes for extra parameters.

Model Washington Vermont Texas New York

Instantaneous -126 -1240 -934 -769
Linear -147 -1200 -1060 -924

Exponential -176 -947 -762 -918
Logistic -165 -1210 -696 –933

Conclusions

• Effective date of the lockdown was different
from that of the actual lockdown date.

• Other factors like local responses or behavior
might have contributed to this difference.

• Preventive measures had a considerable im-
pact on the infection rate of SARS-CoV-2.

• Demonstrates the non-constant nature of the
infection rate during the SARS-CoV-2 pan-
demic as a result of preventative measures.

Limitations

• More accurate and complex models could be
used for better fits.

• Small sample size limited conclusions.

• Could not differentiate between preventative
measures and which ones caused the largest
change.

This study analyzed the effect preventative measures
had on SARS-CoV-2 transmission rates within the
U.S. We used a mathematical model with a variable
transmission rate and fit SARS-CoV-2 case data from
four states to it. We tested four models for the change
in transmission rate: instant, linear, exponential, and
logistic. After comparing models between the four
states, there was no clear best model for the change
in transmission due to preventive measures. These
results suggest that regional differences like behavior,
socioeconomic status, and exact preventative measures
enforced could be responsible for the disparity in how
the transmission rate decayed.


