

COLLEGEOF SCIENCE & ENGINEERING

ABSTRACT

The inclusion of a pyridine moiety in the skeleton of tetra-aza macrocycles introduces a handle by which the electronics and basicity of the ligand can be tuned. Recent work has explored their potential for industrially relevant catalytic reactions. Previous studies of iron ^RPyN₃ complexes showed moderate success for a direct Suzuki-Miyaura C-C coupling reaction. In that work, it became clear that the substitution on the 4-position of the pyridine ring offered significant influence over the efficacy of the catalyst: the electron donating groups offer a better handle of modification of the electronic properties of the iron center, but the electron withdrawing groups increased the catalytic activity of the complex. In this presentation we introduce a second pyridine ring to the macrocycle skeleton, which includes a second position for modification, and compare the activity of this new ${}^{R}Py_{2}N_{2}$ iron complex series to the previous ^RPyN₃ series. The ultimate goal of this project is to develop an iron-based catalyst for direct Suzuki-Miyaura C-C coupling that rivals the catalytic activity of commonly used Palladium-based catalysts and is more environmentally friendly, less toxic, and significantly cheaper.

Modulation of catalytic reactivity with pyridine ring substitutions of Fe-pyridinophane complexes

Substitution

CYCLIC VOLTAMMETRY

-30							
	0		-0.5	-1 -1.5			
			Potentia	l (V vs Fc/Fc+)			
	E _{pc}	E _{pa}	E _{1/2}		Ε _{pc}	Е _{ра}	E _{1/2}
Fe[^{OMe} Py ₂ N ₂]	-736	-623	-854	Fe[^{OMe} PyN ₃]	-577	-461	-519
Fe[^H Py ₂ N ₂]	-720	-621	TBD	Fe[^H PyN ₃]	-502	-404	-453
Fe[^{CI} Py ₂ N ₂]	-821	-678	TBD	Fe[^{CI}PyN₃] -466 -3€		-365	-416
Fe[^{CF3} Py ₂ N ₂]	-760	-674	-733	Fe[^{CF} ³ PyN ₃]	-476	-377	-427
Fe[^{CF3} Py ₂ N ₂]	-760	-674	-733	Fe[^{CF3} PyN ₃]	-476	-377	-427

Katherine J. Smith, Jackson Bonnell, Sarah K. Dunn, and Kayla N. Green, Ph.D. Green Research Group, Department of Chemistry and Biochemistry at Texas Christian University, Fort Worth, TX USA

ITS, I	LOGB	
Decrease	<mark>e⁻ donor abil</mark>	ity
Dec	rease p <i>K_a</i>	
Decr	ease logβ	
¹ Py ₂ N ₂	^{CI} Py ₂ N ₂	^{CF3} Py ₂ N ₂
3.35(2)	7.7(3)	7.5(2)
7.42(2)	6.2(3)	6.2(1)
15.77	13.9	13.70
	/ = 0.15 M	NaCl <i>, T</i> = 298 K
^H Py ₂ N ₂	^{CI} Py ₂ N ₂	^{CF3} Py ₂ N ₂
14.61	18.23	14.82
LO.71(4)	12.97(9)	10.12(2)
free —	$0.059 \log\left(\frac{\mu}{\mu}\right)$	$\left(\frac{3_{ox}}{3_{red}}\right)$

	Yield %	
Fe[^{OMe} Py	55(5)	Fe[^{OMe} Py ₂ N ₂]
Fe[^H Pyl	47(3)	Fe[^H Py ₂ N ₂]
Fe[^{CI} Py	46(4)	Fe[^{CI} Py ₂ N ₂]
Fe[^{CF3} Py	65(9)	Fe[^{CF3} Py ₂ N ₂]

ligand, and the iron complex

ON GOING WORK

- Stop-flow experiments to determine rate limiting step

- Pyrrole vs. Pyridine vs. Benzene

ACKNOWLEDGEMENTS

of Health

Green Research Group

Instrumentation provided by Texas Christian University, College of Science & Engineering, Department of Chemistry & Biochemistry.

• Implementing our complexes to replace Pd catalysts in our own synthesis Cul, Pd. cat. DMF Introduction of more EDG substitutions to expand our library

★ ACS. PRF ★

