Yield of protein crystallization from metastable liquid-liquid phase separation

Shamberia Thomas, Jenny Pham, Aisha Fahim, Ph.D., and Onofrio Annunziata, Ph.D.

Texas Christian University

Department of Chemistry and Biochemistry

Introduction

Preparative protein crystallization is an alternative for chromatography

Figure 1: (**A**) Temperature-concentration phase diagram showing crystal solubility and LLPS phase boundaries. LLPS is metastable with respect to protein crystallization. (**B**) Protein-rich microdroplets generated by LLPS. (**C**) Protein Crystals.

Goal: Developing a new strategy for enhancing protein crystallization from metastable protein-rich droplets generated by liquid-liquid phase separation (LLPS) of protein aqueous solutions.

Lysozyme, our model protein.

Proposed strategy to enhance protein crystallization from droplets: Introduce two additives: LLPS inducer (1) and LLPS modulator(2).

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), **Modulator**

Sodium Chloride (NaCl), Inducer

Experimental Methods

LLPS mediated protein crystallization

Figure 2: Schematic diagram showing LLPS mediated protein crystallization of Lysozyme aqueous samples. All initial protein concentrations were about 50 g/L.

$$yield = 1 - \frac{C_f V_f}{C_i V_i}$$

Where:

 $C_{\rm f}$ is final supernatant concentration

 $C_{\rm i}$ is initial sample concentration

 $V_{\rm f}$ is final supernatant volume

 $V_{\rm i}$ is initial sample volume

 $C_{\mathbf{f}}$

Results and Discussion

Effect of HEPES on LLPS promoted crystallization of lysozyme

- HEPES significantly reduces LLPS boundary; acting as a salting-in agent.
- HEPES produces the highest yield of protein crystallization; acting a salting-out agent.

Table 1: LLPS temperature and yield of crystallization for Lysozyme aqueous samples of various inducer-modulator pairs.

Inducer-modulator pair system	LLPS Temperature (°C)	Yield of Crystallization (%)
0.1M NaCl- 0.1M HEPES	-12.6	92.3
0.1M Phosphate buffer- 0.1M HEPES	-7.4	42.6
0.1M Phosphate buffer- 0.1M NaCl	-1.6	5.6
0.1M phosphate buffer- 0.1M Taurine	-5.6	7.3
0.1M phosphate buffer- 0.1M HEP	-4.2	2.2
0.2M Phosphate buffer	-4.3	6.5

Figure 3:(A) Temperature-concentration phase diagram of inducer NaCl but no modulator **(B)** Temperature-concentration phase diagram of inducer-modulator pair NaCl-HEPES.

Effect of incubation time and temperature on yield of crystallization

Figure 4: **(A)** Effect of incubation on crystallization yield of lysozyme-0.15M NaCl-0.10M HEPES system at pH 7.4. Samples incubated at $(50^{\circ}\text{C}) = 30 \text{ min}$, quenched at $T_{\text{N}}(-15^{\circ}\text{C})$ for $\Delta t_{\text{N}} = 0$ -30min, and incubated at $T_{\text{CG}}(2^{\circ}\text{C})$ for $\Delta t_{\text{CG}} = 30 \text{ min}$. **(B)** Effect of incubation temperature on yield of crystallization of lysozyme-0.15M NaCl-0.1M HEPES system at pH 7.4. Samples incubated at $(50^{\circ}\text{C}) = 30 \text{ mins}$; quenched at T_{N} for $\Delta t_{\text{N}} = 30 \text{mins}$ and incubated at $T_{\text{CG}}(2^{\circ}\text{C})$ for $\Delta t_{\text{CG}} = 30 \text{ mins}$.

Conclusion

- Yield of crystallization significantly increases with incubation time up to 30 mins.
- LLPS enhances protein crystallization.
- This LLPS-mediated protein-crystallization strategy will be applied to other proteins like ribonuclease A and human serum albumin.
- I plan to explore how inorganic nanoparticles that can weakly adsorb proteins may enhance protein crystallization from protein-rich liquid droplets.

References

Fahim, A., Pham, J., Thomas, S., and Annunziata, O. *J. Mol. Liq.* **2024**. 398, 124164

Annunziata, O., & Wang, Y. J. Phys. Chem. 2007. 111, 1222-1230.

Babinchak, M., & Surewicz, W. Journal of Molecular Biology. 2020. 1910-1925.

Annunziata, O., & Fahim, A. *Int. J. Biol. Macromol.* **2021.** 186, 519-527.

Acknowledgement

TCU Research and Creative Activities Fund