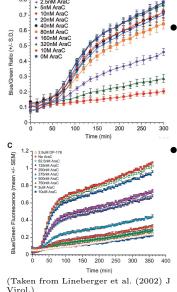
Density Dependence: A Nonlinear Analysis of HIV Syncytium in Drug-Treated Transfection


Anthony Gerg and Hana M. Dobrovolny

Department of Physics and Astronomy, Texas Christian University, Fort Worth, USA

Background

- HIV Type-1 is a virus that affects the immune system of millions around the globe.
- HIV Type-1 allows for infected cells to fuse with healthy cells, forming multi-nucleated cells called syncytia.
- HIV infected cells express viral glycoproteins that allow for binding to other cells expressing CD4 receptor, which then leads to syncytia formation.
- From assays based on syncytia spread, we can quantify characteristics like fusion times and syncytia formation rate.
- By looking at the inhibition of these glycoproteins via a chemical agent, we can see how much of a dependence syncytia formation has on viral glycoproteins.

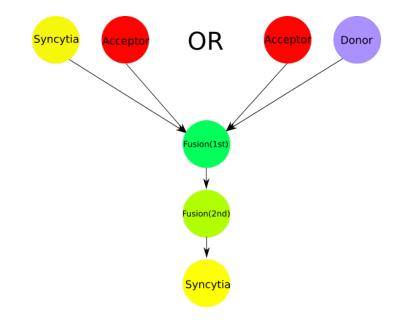
Cell Fusion Assay

Cell fusion assays use a donor cells expressing the viral surface protein and acceptor cells expressing the cell receptor to observe fusion, here the viral glycoproteins are gp120 and gp41.

• We used data from cell fusion assays performed by Lineberger et al. (2002) J Virol. that examined fusion for 2 HIV variants that bind in slightly different ways. This was done with different drug-dosages as $\overline{}_{400}$ seen in the data.

Cell-cell fusion

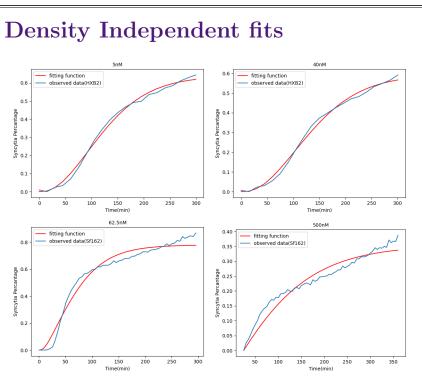
- Glycoprotein expression in transfected cells will form clusters, which allows for cell-cell fusion with acceptor cells expressing receptor. The glycoprotein structure consists of a surface protein (gp120) and a transmembrane protein (gp41).
- Cytosine Arabinoside (AraC) was hypothesized to be used to limit the transcription and synthesis of gp120/gp41. This was done due to it's effect on the precursor protein, gp160, which then is synthesized into gp120/gp41.


Methods

• We fit the mathematical model to data using minimization of the sum of squared residuals. SSR is the following:

$$SSR = \sum_{i=1}^{n} (y_i - f(t_i))^2$$

- The syncytia formation rate, initial number of donor cells, and fusion times were estimated.
- Bootstrapping was used to estimate the posterior distributions of the free parameters.
- All code was written using python.


Cell Fusion Assay Model

• We used a mathematical model to fit data from the cell fusion assay, with Erlang time distributed fusion states.

$$\begin{aligned} \frac{\mathrm{d}D}{\mathrm{d}t} &= -\gamma DA\\ \frac{\mathrm{d}A}{\mathrm{d}t} &= -\gamma DA - \gamma SA\\ \frac{\mathrm{d}F_1}{\mathrm{d}t} &= 2\gamma DA + \gamma SA - kF\\ \frac{\mathrm{d}F_2}{\mathrm{d}t} &= kF_1 - kF_2\\ \frac{\mathrm{d}S}{\mathrm{d}t} &= kF_2. \end{aligned}$$

- D are the donor cells, A are the acceptor cells, F_1 are the first fusion state, F_2 are the second fusion state, and S are cells that have fused into syncytia.
- The syncytia formation rate is represented by γ , and fusion time is represented by 1/k. These are two of the three parameters we fit for.

The fits are not as great as they possibly could be, particularly the Sf-162 strain of HIV has bad SSR. The difference between model and data was enough to consider additions to the model.

Density Dependence

• The difference in model and data was thought to have been related to spatial effects in viral spread, as donor cells run out and more syncytia form, the less of a chance there is for fusion to occur.

 $\gamma_d = \frac{1}{1}$

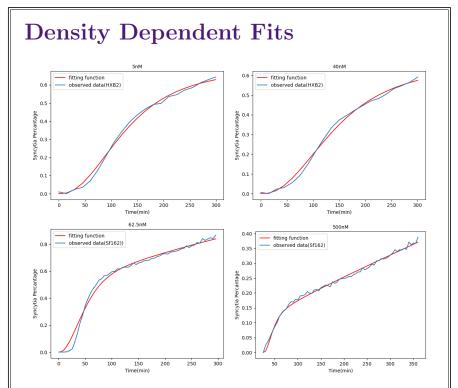
- dependent on α and the amount of syncytia already present. If α is large, then as syncytia grows the formation rate decreases
- To include γ_d this in the model, we simply change the γ in the ODE system to γ_d .

1.0

$$\frac{dD}{dt} = -\gamma_d D$$
$$\frac{dA}{dt} = -\gamma_d D$$
$$\frac{dF_1}{dt} = 2\gamma_d D$$
$$\frac{dF_2}{dt} = kF_1 - \frac{dS}{dt} = kF_2$$

• This adds a new parameter to fit to, α , which gives a measure of the amount of dependence of syncytia formation rate on density of syncytia.

$$\frac{\gamma}{-\alpha S}$$


• We implemented density-dependent syncytia formation,

DA

 $DA - \gamma_d SA$

 $PA + \gamma_d SA - kF_1$

 kF_2

- These fits are improved from the original model fits, especially in the Sf-162 strains. This is also seen in a reduction in SSR, which improved by almost three times in some cases. (Example: 62.5nM AraC Sf162 independent: 1.221×10^{-1} and 62.5nM AraC Sf162: 4.572×10^{-2}).)
- This leads us to assume there is density-dependence involved in our drug-treated system. This dependence rises as we increase the dosage of AraC, meaning that there is an even greater increase due to less expression of glycoproteins.

Conclusions

- The formation of syncytia is affected by transcription inhibitor AraC. The inhibition of these glycoproteins leads to a significant change in syncytia formation rate.
- The analysis seems to show a density dependence in syncytia formation rate of HIV, especially when drug dosages are very high. This has not been investigated before, and could lead to better modeling of HIV.

Future Directions

- Measure syncytia formation rate and fusion duration for different syncytia-forming viruses, like respiratory syncytial virus (RSV).
- Use an agent-based model, which includes explicit spatial dependence, to investigate syncytia formation.
- Perform imaging and experiments on syncytia to help validate models.
- Investigate temperature and pH dependence of parameters.

