

# Modeling pulsed drug treatment with a constant drug in cancer growth models

Prateek Malkoti and Hana M. Dobrovolny

Department of Physics and Astronomy, Texas Christian University, Fort Worth, USA

### Background

- Cancer is a leading cause of death worldwide, causing around one in every six deaths.
- Models can help predict how different treatments affect cancer cell growth in hopes of determining which will effectively kill a tumor.
- Realistic pulsed drug treatments can be computationally expensive and difficult to analyze mathematically.
- It's computationally easier to simulate constant drug treatment, so we examined whether pulsed treatment could be approximated by a constant drug simulation.

#### Methods

- We stimulated cancer growth curves under different treatment regimens (different doses, different timings) simulated by a pharmacokinetic model.
- They were then fitted with a growth curve assuming a constant drug concentration. Fitting is done by minimizing the sum of square residuals,

$$SSR = \sum_{i=1}^{n} (y_i - f(t_i; \theta))^2$$

- The estimated constant drug dose was determined as a function of the applied drug dose and the dose timing.
- All code was written using python.

#### Modeling drug effect

The pharmacokinetic model of a drug treatment is

$$D(t) = \frac{D_{\operatorname{app}} \cdot k_a}{(k_a - k_e)} \left[ \frac{[1 - \exp(-nk_e\tau)] \exp(-k_et)}{1 - \exp(-k_e\tau)} - \frac{[1 - \exp(-nk_a\tau)] \exp(-k_at)}{1 - \exp(-k_a\tau)} \right]$$

where  $D_{\text{app}}$  is the dose of the pill administered in units of mg,  $\tau$  is the time between doses,  $k_a$  and  $k_e$  are the drug absorption and elimination rates, respectively, and n is the number of doses administered. Time, t, is measured from the  $n^{\text{th}}$ dose. The dose is used to calculate the drug efficacy through the  $E_{max}$  model,

$$\varepsilon = \frac{\varepsilon_{\max}D}{IC_{50} + D},$$

where  $\varepsilon_{\rm max}$  is the maximum possible effect of the drug,  $IC_{50}$ is the drug dose at which you achieve half the maximum effect, and D is the applied dose of the drug. Drug efficacy is used to reduce the growth rate of cancer by multiplying the parameter a by  $(1 - \varepsilon)$ .

## **Tumor Growth Models**

We assess seven different models of tumor growth. Exponential model:

 $\dot{V} = aV$ 

Mendelsohn model:  $\dot{V} = aV^b$ 

Logistic model:

 $\dot{V} = a \left(1 - \frac{V}{h}\right)$ 

$$\dot{V} = \frac{aV}{(V+b)}$$

Surface model:

Linear model:

$$\dot{V} = \frac{aV}{(V+b)^2}$$

 $\dot{V} = V^{\frac{2}{3}} - bV$ 

Bertalanffy model:

Gompertz model:

$$\dot{V} = aV \ln\left[\frac{b}{V+a}\right]$$

V is the volume of the tumor, and a, b, and c are parameters.

#### Logistic Model



The logistic model assumes that all cells regularly divide until resources such as space or nutrients become limited.

#### **Exponential Model**



The exponential model assumes that all cells divide regularly.

### Mendelsohn Model



The Mendelsohn model assumes that some cells divide regularly while others are in a dormant state.





The linear model assumes that the number of new cells added remains constant at all times.

## Surface Model



The surface model assumes that only the cells on the surface of a spherical tumor divide.

## Bertalaffany Model



The Bertalanffy model assumes that cells near the surface of a spherical tumor divide and cells in the interior die.













The Gompertz model assumes that cells are less likely to divide as they age.

## **Tumor Fitting**

• With every model of tumor growth, we fitted a treated growth curve with a growth curve assuming a constant drug concentration. Below is an example of a fitted model of the Logistic curve.



## Conclusions

- Different growth models exhibit varying rates of tumor volume reduction, with some models, like the Bertalanffy model, showing a more pronounced decrease in tumor volume over time.
- The selection of a growth model significantly impacts the final count of cancerous cells.
- In all cases, we are able to find a constant applied drug dose that reproduces the effect of a pharmacokinetic drug.